INVESTIGADORES
FERNANDEZ Liliana Patricia
artículos
Título:
Precision improvement for omeprazole determination through stability evaluation
Autor/es:
PERALTA, CECILIA; FERNANDEZ, LILIANA; MASI, ADRIANA
Revista:
Drug testing and analysis
Editorial:
JOHN WILEY & SONS INC
Referencias:
Año: 2012 vol. 4 p. 48 - 52
ISSN:
1942-7611
Resumen:
A new spectrofluorimetric method for the determination of omeprazole (OMP) based on its degradation reaction catalyzed by ultraviolet (UV) light is proposed. OMP in aqueous solution is very unstable, which renders a serious difficulty for controlling its quality. It does not show native fluorescence, but when exposed to UV radiation, it generates a highly fluorescent degradation product with adequate stability for indirect OMP quantification. Under the studied optimal experimental conditions (pH, temperature, exposure time to UV radiation), a specific rate constant of 2.851 min−1-described by zero-order kinetic – was obtained for the degradation reaction. Using ëexc 293 nm and ëem 317 nm, a linear relationship was obtained (r2 0.9998) in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. obtained for the degradation reaction. Using ëexc 293 nm and ëem 317 nm, a linear relationship was obtained (r2 0.9998) in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. obtained for the degradation reaction. Using ëexc 293 nm and ëem 317 nm, a linear relationship was obtained (r2 0.9998) in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. −1-described by zero-order kinetic – was obtained for the degradation reaction. Using ëexc 293 nm and ëem 317 nm, a linear relationship was obtained (r2 0.9998) in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. ëexc 293 nm and ëem 317 nm, a linear relationship was obtained (r2 0.9998) in the concentration range of 0.1 to 1.3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure. .3 ìgmL−1, with a detection limit of 1.07 10−3 ìgmL−1 (S/N = 3). The methodology developed was successfully applied to OMP quality control in pure drugs and tablet dosage forms without previous treatment, with good tolerance to common excipient, and a high level of concordance between the nominal and experimental values. This work constitutes an important contribution to knowledge of the degradation mechanism of OMP. It has been shown to be appropriate for OMP quality control, to have an adequate sampling rate, low cost instrument, and to be a less polluting procedure.