INVESTIGADORES
ESTENOZ Diana Alejandra
artículos
Título:
PLGA nano- and microparticles for the controlled release of florfenicol: Experimental and theoretical study
Autor/es:
KARP, F.; BUSATTO, C.; TURINO, L.; LUNA, J.; ESTENOZ, D.
Revista:
JOURNAL OF APPLIED POLYMER SCIENCE
Editorial:
JOHN WILEY & SONS INC
Referencias:
Año: 2018 vol. 136
ISSN:
0021-8995
Resumen:
In this study, PLGA particle systems were studied for the controlled release of florfenicol, a broad spectrum antibiotic used in veterinary treatments. The emulsion-solvent evaporation technique was used for particle preparation. To evaluate the particle size, entrapment efficiency, and drug release behavior, factors such as solvent type, emulsification time and methods, and drug to polymer ratio were investigated. The results showed that the use of ethyl acetate and 2.5 min of ultrasonication or 30 min of homogenization can lead to sub-micron and micron-sized particles, respectively. Sizes between 200?300 nm and 2?3 μm were obtained for ultrasonication and homogenization procedures, respectively. Entrapment efficiencies were around 20% for all systems and release profiles were size dependent. In addition, a mathematical model was implemented to simulate the florfenicol transport. The model predicts the florfenicol release and takes into account the particle size, polymer molecular weight, and autocatalytic polymer degradation. Simulation results are in good agreement with experimental results. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47248.