CIBICI   14215
CENTRO DE INVESTIGACION EN BIOQUIMICA CLINICA E INMUNOLOGIA
Unidad Ejecutora - UE
artículos
Título:
A plasmonic Approach to Study protein interaction Kinetics through the Dimerization functionalized Ag nanoparticlesof
Autor/es:
CORONADO, EDUARDO A.; MOTRICH, RUBEN D.; MERCADAL, PABLO A.
Revista:
Scientific Reports
Editorial:
Nature Publishing Group
Referencias:
Año: 2019 vol. 9 p. 13122 - 13133
Resumen:
Understanding the kinetics of protein interactions plays a key role in biology with significant implications for the design of analytical methods for disease monitoring and diagnosis in medical care, research and industrial applications. Herein, we introduce a novel plasmonic approach to study the binding kinetics of protein-ligand interactions following the formation of silver nanoparticles (Ag NPs) dimers by UV-Vis spectroscopy that can be used as probes for antigen detection and quantification. To illustrate and test the method, the kinetics of the prototype biotin-streptavidin (Biot-STV) pair interaction was studied. Controlled aggregates (dimers) of STV functionalized Ag NPs were produced by adding stoichiometric quantities of gliadin-specific biotinylated antibodies (IgG-Biot). The dimerization kinetics was studied in a systematic way as a function of Ag NPs size and at different concentrations of IgG-Biot. The kinetics data have shown to be consistent with a complex reaction mechanism in which only the Ag NPs attached to the IgG-Biot located in a specific STV site are able to form dimers. These results help in elucidating a complex reaction mechanism involved in the dimerization kinetics of functionalized Ag NPs, which can serve as probes in surface plasmon resonance-based bioassays for the detection and quantification of different biomarkers or analytes of interest.