IALP   13078
INSTITUTO DE ASTROFISICA LA PLATA
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
Migrating Jupiter up to the habitable zone: Earth-like planet formation and water delivery
Autor/es:
DE ELIA, GONZALO; DARRIBA, LUCIANO ARIEL; BRUNINI, ADRIÁN; GUILERA, OCTAVIO
Lugar:
Coyhaique
Reunión:
Congreso; Astrobiology 2017; 2017
Institución organizadora:
Unión Astronómica Internacional
Resumen:
Several observational works have shown the existence of Jupiter-mass planets covering a wide range of semi-major axes aroundSun-like stars.We aim to analyse the planetary formation processes around Sun-like stars that host a Jupiter-mass planet atintermediate distances ranging from $sim$1 au to 2 au. Our study focusses on the formation and evolution of terrestrial-likeplanets and water delivery in the habitable zone (HZ) of the system. Our goal is also to analyse the long-term dynamicalstability of the resulting systems.A semi-analytic model was used to define the properties of a protoplanetary disk that produces a Jupiter-mass planet around the snow line, which is located at $sim$2.7 au for a solar-mass star. Then, it was used to describe the evolution of embryos and planetesimals during the gaseous phase up to the formation of the Jupiter-mass planet, and we used the results as the initial conditions to carry out N-body simulations of planetary accretion. We developed sixty N-body simulations to describe the dynamical processes involved during and after the migration of the gas giant.Our simulations produce three different classes of planets in the HZ: `water worlds´, with masses between 2.75 $M_{oplus}$ and 3.57 $M_{oplus}$ and water contents of 58 % and 75 % by mass, terrestrial-like planets, with masses ranging from 0.58 $M_{oplus}$ to 3.8 $M_{oplus}$ and water contents less than 1.2 % by mass, and `dry worlds´, simulations of which show no water.A relevant result suggests the efficient coexistence in the HZ of a Jupiter-mass planet and a terrestrial-like planet with a percentageof water by mass comparable to the Earth. Moreover, our study indicates that these planetary systems are dynamically stablefor at least 1 Gyr.Systems with a Jupiter-mass planet located at 1.5 au - 2 au around solar-type stars are of astrobiological interest.These systems are likely to harbour terrestrial-like planets in the HZ with a wide diversity of water contents.