INQUIMAE   12526
INSTITUTO DE QUIMICA, FISICA DE LOS MATERIALES, MEDIOAMBIENTE Y ENERGIA
Unidad Ejecutora - UE
artículos
Título:
Twisting of Charged Nanoribbons to Helicoids Driven by Electrostatics
Autor/es:
CONDA-SHERIDAN, MARTIN; ZALDIVAR, GERVASIO; TAGLIAZUCCHI, MARIO
Revista:
JOURNAL OF PHYSICAL CHEMISTRY B - (Print)
Editorial:
AMER CHEMICAL SOC
Referencias:
Año: 2020 vol. 124 p. 3221 - 3227
ISSN:
1520-6106
Resumen:
Charged amphiphiles in solution usually self-assemble into flat nanoribbons that spontaneously twist into different shapes. The role of electrostatics in this process is still under strong debate. This work studies the electrostatic free energy of twisting a nanoribbon at the level of the nonlinear Poisson-Boltzmann approximation. It is shown that helicoid-shaped ribbons are more stable than flat ribbons, while other shapes under consideration (cylindrical helixes and bent ribbons) are always less stable than the flat ribbon. The unexpected electrostatics-driven twisting of the ribbon into a helicoid is ascribed to the increase in its perimeter with increasing degree of twisting, as charges near the edge of the ribbon are electrostatically more stable than those near its center. This argument successfully explains the effects of salt concentration and the width of the ribbon on the optimal twisting period and allows us to approximately describe the problem of ribbon twisting in terms of two dimensionless variables that combine the helicoid twisting period, the Debye length of the solution, and the width of the ribbon. The magnitude of the electrostatic twisting energy predicted by our calculations is comparable to that of restoring elastic forces for typical ribbons of self-assembled amphiphiles, which indicates that electrostatics plays an important role in determining the equilibrium shape of charged nanoribbons.