INQUIMAE   12526
INSTITUTO DE QUIMICA, FISICA DE LOS MATERIALES, MEDIOAMBIENTE Y ENERGIA
Unidad Ejecutora - UE
artículos
Título:
Molecular Modeling of Responsive Polymer Films
Autor/es:
MARIO TAGLIAZUCCHI; ERNESTO J. CALVO; IGAL SZLEIFER
Revista:
AICHE JOURNAL
Editorial:
JOHN WILEY & SONS INC
Referencias:
Año: 2010 vol. 56 p. 1952 - 1959
ISSN:
0001-1541
Resumen:
In this perspective, we have shown three different cases of responsive polymers at surfaces where the properties of the surface can be varied in response to cues from the bulk solution or in the presence of an external field. The most important conclusion in all three cases is that the chemical reaction equilibrium, physical interactions and molecular organization are strongly coupled, and it is imperative to consider the global and local changes that occur to the surface structure and properties due to this coupling. In particular acid-base and redox equilibrium are very different in polymer-modified surfaces than in the corresponding bulk solutions. Moreover, the definition of ‘‘apparent redox potentials’’ and ‘‘apparent pKa’’ results from the averaging over highly inhomogeneous values, and, therefore, they do not necessarily represent the state of the layer and the local values and their variation are very important for the design of functional surfaces. The very large variation on chemical equilibrium results from the optimization of all the interactions. The picture that emerges is that trying to deduce what the final state of the system is by looking at the individual optimization of each contribution leads to qualitative incorrect assumptions and only the minimization of the complete free energy leads to the proper behavior in these complex systems.a’’ results from the averaging over highly inhomogeneous values, and, therefore, they do not necessarily represent the state of the layer and the local values and their variation are very important for the design of functional surfaces. The very large variation on chemical equilibrium results from the optimization of all the interactions. The picture that emerges is that trying to deduce what the final state of the system is by looking at the individual optimization of each contribution leads to qualitative incorrect assumptions and only the minimization of the complete free energy leads to the proper behavior in these complex systems.