IIBBA   05544
INSTITUTO DE INVESTIGACIONES BIOQUIMICAS DE BUENOS AIRES
Unidad Ejecutora - UE
congresos y reuniones científicas
Título:
Differential coupling of parvalbumin and somatostatin interneurons with adult-born granule cells.
Autor/es:
AYELEN I GROISMAN
Lugar:
Paris, Francia
Reunión:
Seminario; Seminario Institucional PARIS-SACLAY INSTITUTE NEUROSCIENCE, DANIEL SHULZ TEAM.; 2019
Institución organizadora:
PARIS-SACLAY INSTITUTE NEUROSCIENCE, DANIEL SHULZ TEAM
Resumen:
The dentate gyrus of the hippocampus is dominated by a strong GABAergic tone that maintains sparse levels of activity. Adult neurogenesis disrupts this balance through the continuous addition of new granule cells (GCs) that display high excitability while develop and connect within the preexisting host circuit. The dynamics of the connectivity map for developing GCs in the local inhibitory networks remains unknown. We used optogenetics to study afferent and efferent synaptogenesis between new GCs and GABAergic interneurons expressing parvalbumin (PV-INs) and somatostatin (SST-INs). Inputs from PV-INs targeted the soma and remained immature until they grew abruptly in >4-week-old GCs. This transition was accelerated by exposure to enriched environment. Inputs from SST-INs were dendritic and developed slowly until reaching maturity by 8 weeks. Synaptic outputs from GCs onto PV-INs matured faster than those onto SST-INs, but also required several weeks. In the mature dentate network, PV-INs exerted an efficient control of GC spiking and were involved in both feedforward and feedback loops, a mechanism that would favor lateral inhibition and sparse coding. Our results reveal a long-lasting transition where adult-born neurons remain poorly coupled to inhibition, which might enable a parallel streaming channel from the entorhinal cortex to CA3 pyramidal cells.