CIQUIBIC   05472
CENTRO DE INVESTIGACIONES EN QUIMICA BIOLOGICA DE CORDOBA
Unidad Ejecutora - UE
artículos
Título:
Phase coexistence in films composed of DLPC and DPPC: A comparison between different model membrane systems
Autor/es:
AGUSTÍN MANGIAROTTI, BENJAMÍN CARUSO, NATALIA WILKE.
Revista:
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2014 vol. 1838 p. 1823 - 1831
ISSN:
0005-2736
Resumen:
For the biophysical study of membranes, a variety of model systems have been used to measure the different parameters and to extract general principles concerning processes that may occur in cellular membranes. However, there are very few reports in which the results obtained with the different models have been compared. In this investigation, we quantitatively compared the phase coexistence in Langmuir monolayers, freestanding bilayers and supported films composed of a lipid mixture of DLPC and DPPC. Two-phase segregation was observed in most of the systems for a wide range of lipid proportions using fluorescence microscopy. The lipid composition of the coexisting phases was determined and the distribution coefficient of the fluorescent probe in each phase was quantified, in order to explore their thermodynamic properties. The comparison between systems was carried out at 30 mN/m, since it is accepted that at this or higher lateral pressures, the mean molecular area in bilayers is equivalent to that observed in monolayers. Our study showed that while Langmuir monolayers and giant unilamellar vesicles had a similar phase behavior, supported films showed a different composition of the phases with the distribution coefficient of the fluorescent probe being close to unity. Our results suggest that, in supported membranes, the presence of the rigid substrate may have led to a stiffening of the liquid-expanded phase due to a loss in the degrees of freedom of the lipids as a consequence of the proximity of the solid material.