INIBIBB   05455
INSTITUTO DE INVESTIGACIONES BIOQUIMICAS DE BAHIA BLANCA
Unidad Ejecutora - UE
artículos
Título:
Unraveling Mechanisms Underlying Partial Agonism in 5-HT3A receptors
Autor/es:
CORRADI, J.; BOUZAT C
Revista:
JOURNAL OF NEUROSCIENCE
Editorial:
SOC NEUROSCIENCE
Referencias:
Lugar: Washington; Año: 2014 vol. 34 p. 16865 - 16876
ISSN:
0270-6474
Resumen:
Partial agonists have emerged as attractive therapeutic molecules. 2-Me-5HT and tryptamine have been defined as partial agonists of 5-HT3 receptors on the basis of macroscopic measurements. Because several mechanisms may limit maximal responses we took advantage of the high-conductance form of the mouse 5-HT3A receptor to understand their molecular actions. Individual 5-HT-bound receptors activate in long episodes of high open probability, consisting of groups of openings in quick succession. The activation pattern is similar for 2-Me-5HT only at very low concentrations since profound channel blockade takes place within the activating concentration range. In contrast, activation episodes are significantly briefer in the presence of tryptamine. Generation of a full activation scheme reveals that the fully-occupied receptor overcomes transitions to closed pre-open states (primed states) before opening. Reduced priming explains the partial agonism of tryptamine. In contrast, 2-Me-5HT is not a genuine partial agonist since priming is not dramatically affected and its low apparent efficacy is mainly due to channel blockade. The analysis also shows that the first priming step is the rate-limiting step and partial agonists require an increased number of priming steps for activation. Molecular docking suggests that interactions are similar for 5-HT and 2-Me-5HT but slightly different for tryptamine. Our study contributes to understanding 5-HT3A receptor activation, extends the novel concept of partial agonism within the Cys-loop family, reveals novel aspects of partial agonism, and unmasks molecular actions of classically-defined partial agonists. Unraveling mechanisms underlying partial responses has implications in the design of therapeutic compounds.