INIBIBB   05455
INSTITUTO DE INVESTIGACIONES BIOQUIMICAS DE BAHIA BLANCA
Unidad Ejecutora - UE
artículos
Título:
The nematode serotonin-gated chloride channel MOD-1: A novel target for anthelmintic therapy
Autor/es:
HERNANDO, G.; RODRIGUEZ ARAUJO, N.; BOUZAT, C.; CORRADI, J.
Revista:
JOURNAL OF BIOLOGICAL CHEMISTRY
Editorial:
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Referencias:
Lugar: Bethesda, Maryland; Año: 2022 vol. 298 p. 1 - 11
ISSN:
0021-9258
Resumen:
Anthelmintics are used to treat human and veterinary parasitic diseases, as well as to reduce crop and livestock production loss associated with parasitosis. The free-living nematode Caenorhabditis elegans, a model system for anthelmintic drug discovery, has a serotonin (5-HT)-gated chloride channel, MOD-1, which belongs to the Cys-loop receptor family and modulates locomotory and behavioral functions. Since MOD-1 is unique to nematodes, it is emerging as an attractive anthelmintic drug target, but details of MOD-1 function are unclear. Here, we revealed novel aspects of MOD-1 function from the molecular level to the organism level and identified compounds targeting this receptor, which may provide new directions for anthelmintic drug discovery. We used whole-cell current recordings from heterologously expressed MOD-1 to show that tryptamine, a weak partial agonist of vertebrate 5-HT3 receptors, efficaciously activates MOD-1. A screen for modulators revealed that GABAergic ligands piperazine and muscimol reduce 5-HT-elicited currents, thus identifying novel MOD-1 allosteric inhibitors. Next, we performed locomotor activity assays, and we found 5-HT and tryptamine rapidly decrease worm motility, which is reversible only at low 5-HT concentrations. Mutants lacking MOD-1 are partially resistant to both drugs, demonstrating its key role in locomotion. Acting as an antagonist of MOD-1, we showed piperazine reduces the locomotor effects of exogenous 5-HT. Therefore, tryptamine- and piperazine-derived compounds, acting at MOD-1 through different molecular mechanisms, emerge as promising anthelmintic agents. This study enhances our knowledge of the function and drug selectivity of Cys-loop receptors and postulates MOD-1 as a potential target for anthelmintic therapy.