INTEMA   05428
INSTITUTO DE INVESTIGACIONES EN CIENCIA Y TECNOLOGIA DE MATERIALES
Unidad Ejecutora - UE
artículos
Título:
Efficiency of 4,4-bis(N,N-diethylamino) benzophenone for the polymerization of dimethacrylate resins in thick sections
Autor/es:
WALTER F SCHROEDER; SILVANA V ASMUSSEN; WAYNE D COOK; CLAUDIA I VALLO
Revista:
POLYMER INTERNATIONAL
Editorial:
JOHN WILEY & SONS LTD
Referencias:
Lugar: Chichester; Año: 2011 vol. 60 p. 1362 - 1369
ISSN:
0959-8103
Resumen:
The efficiency of 4,4´-bis(N,N-diethylamino)benzophenone(DEABP) for thepolymerizationofdimethacrylatemonomers inthick sections (1?2 mm)was studied. DEABP (ëmax = 365 nm) represents a complete initiating system as it contains both ketone and amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. sections (1?2 mm)was studied. DEABP (ëmax = 365 nm) represents a complete initiating system as it contains both ketone and amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. sections (1?2 mm)was studied. DEABP (ëmax = 365 nm) represents a complete initiating system as it contains both ketone and amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. sections (1?2 mm)was studied. DEABP (ëmax = 365 nm) represents a complete initiating system as it contains both ketone and amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. -bis(N,N-diethylamino)benzophenone(DEABP) for thepolymerizationofdimethacrylatemonomers inthick sections (1?2 mm)was studied. DEABP (ëmax = 365 nm) represents a complete initiating system as it contains both ketone and amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections. ëmax = 365 nm) represents a complete initiating system as it contains both ketone and amine functional groups. During irradiation, DEABP photobleaches at a fast rate causing deeper penetration of light through the underlying layers, but the photoinitiation efficiency (rate of polymerization per photon absorption rate) is relatively poor. As a result, irradiation of methacrylate monomers at 365 nm results in a slow average polymerization rate and a reduced monomer conversion for thick sections due to the light attenuation caused by the high absorptivity of DEABP and photolysis products. These results highlight the inherent interlinking of light attenuation and photobleaching rate in polymerization of thick sections.