INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
artículos
Título:
Alternating regimes of motion in a model with cell-cell interactions
Autor/es:
DIAMBRA, LUIS; GUISONI, NARA; MAZZITELLO, KARINA I.
Revista:
Physical Review E
Editorial:
American Physical Society
Referencias:
Año: 2020 vol. 101 p. 1 - 10
ISSN:
2470-0045
Resumen:
Cellular movement is a complex dynamic process, resulting from the interaction of multiple elements at the intra-and extracellular levels. This epiphenomenon presents a variety of behaviors, which can include normal and anomalous diffusion or collective migration. In some cases, cells can get neighborhood information through chemical or mechanical cues. A unified understanding about how such information can influence the dynamics of cell movement is still lacking. In order to improve our comprehension of cell migration we have considered a cellular Potts model where cells move actively in the direction of a driving field. The intensity of this driving field is constant, while its orientation can evolve according to two alternative dynamics based on the Ornstein-Uhlenbeck process. In one case, the next orientation of the driving field depends on the previous direction of the field. In the other case, the direction update considers the mean orientation performed by the cell in previous steps. Thus, the latter update rule mimics the ability of cells to perceive the environment, avoiding obstacles and thus increasing the cellular displacement. Different cell densities are considered to reveal the effect of cell-cell interactions. Our results indicate that both dynamics introduce temporal and spatial correlations in cell velocity in a friction-coefficient and cell-density-dependent manner. Furthermore, we observe alternating regimes in the mean-square displacement, with normal and anomalous diffusion. The crossovers between diffusive and directed motion regimes are strongly affected by both the driving field dynamics and cell-cell interactions. In this sense, when cell polarization update grants information about the previous cellular displacement, the duration of the diffusive regime decreases, particularly in high-density cultures.