INIFTA   05425
INSTITUTO DE INVESTIGACIONES FISICO-QUIMICAS TEORICAS Y APLICADAS
Unidad Ejecutora - UE
artículos
Título:
Comparative study of transdermal drug delivery systems of resveratrol: High efficiency of deformable liposomes
Autor/es:
TOSATO, MAIRA GASPAR; KRISHNA TIPPAVAJHALA, VAMSHI; TOSATO, MAIRA GASPAR; KRISHNA TIPPAVAJHALA, VAMSHI; MARTIN, AIRTON A.; DICELIO, LELIA; MARTIN, AIRTON A.; DICELIO, LELIA; MAYA GIRÓN, JULIE V.; FERNÁNDEZ LORENZO DE MELE, MÓNICA; MAYA GIRÓN, JULIE V.; FERNÁNDEZ LORENZO DE MELE, MÓNICA
Revista:
MATERIALS SCIENCE & ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 2018 vol. 90 p. 356 - 364
ISSN:
0928-4931
Resumen:
Trans-resveratrol (3, 5, 4? trihydroxystilbene, RSV) is a natural compound that shows antioxidant, cardioprotective, anti-inflammatory and anticancer properties. The transdermal, painless application of RSV is an attractive option to other administration routes owing to its several advantages like avoiding gastrointestinal problems and first pass metabolism. However, its therapeutic potential is limited by its low solubility and low stability in water and the reduced permeability of stratum corneum. To overcome these inconveniences the encapsulation of this compound in a drug delivery system is proposed here. In order to find the best carrier for transdermal application of RSV various liposomal nanoparticulate carriers like conventional liposomes (L-RSV), deformable liposomes (LD-RSV), ultradeformable liposomes (LUD-RSV) and ethosomes (Etho-RSV) were assayed. Transmission electron microscopic (TEM) and dynamic light scattering (DLS) studies were performed to analyze the surface morphology of these carriers. Structural characterization for these formulations was performed by confocal Raman spectroscopy. The spectroscopic results were analysed in conjunction with calorimetric data to identify the conformational changes and stability of formulations in the different nanoparticles induced by the presence of RSV.Comparison of the results obtained with the different carrier systems (L-RSV, LD-RSV, LUD-RSV and Etho-RSV) revealed that the best RSV carrier was LD-RSV. The increase in the fluidity of the bilayers in the region of the hydrophobic chains of the phospholipid by ethanol probably facilitates the accommodation of the RSV in the bilayer and contributes to the improved encapsulation of RSV without affecting the mobility of this carrier.