CIC   05421
CENTRO DE INVESTIGACIONES CARDIOVASCULARES "DR. HORACIO EUGENIO CINGOLANI"
Unidad Ejecutora - UE
artículos
Título:
Reactive oxygen species partially mediate high dose angiotensin II-induced positive inotropic effect in cat ventricular myocytes
Autor/es:
YEVES AM; CALDIZ CI; AIELLO EA; VILLA ABRILLE MC; ENNIS IL
Revista:
CARDIOVASCULAR PATHOLOGY
Editorial:
ELSEVIER SCIENCE INC
Referencias:
Lugar: Amsterdam; Año: 2015
ISSN:
1054-8807
Resumen:
Abstract BACKGROUND: Reactive oxygen species, such as superoxide, are being increasingly recognized as key components of a vast array of signaling pathways. Angiotensin II is a well-recognized stimulus for superoxide production through NADPH oxidase activation and opening of the mitochondrial ATP-sensitive potassium channels (mKATP). A role for this mechanism has been proposed to explain several physiological effects of the peptide. The aim of this study was to evaluate the involvement of this mechanism in the inotropic response to 100nmol/L angiotensin II. METHODS: Sarcomere shortening and intracellular pH (BCECF-epifluorescence technique) were evaluated in isolated cat ventricular myocytes placed in a perfusion chamber on the stage of an inverted microscope. Myocardial superoxide production was evaluated by the lucigenin quimioluminiscence method. RESULTS: Angiotensin II (100nmol/L) increased~70% sarcomere shortening, effect that was only partially prevented by NADPH oxidase inhibition, mKATP channel blockade or inhibition of the cardiac Na+/H+ exchanger (NHE-1). Moreover, angiotensin II stimulates NHE-1 activity by a NADPH oxidase-dependent mechanism. Myocardial superoxide production was also increased by angiotensin II, and this action was completely prevented either by NADPH oxidase inhibition or mKATP channel blockade. CONCLUSIONS: The positive inotropic response to 100nmol/L angiotensin II is due to both ROS/NHE-1 dependent and independent pathways, this being a point of divergence with the signaling previously described to be triggered by lower concentrations of angiotensin II (i.e.: 1nmol/L). Copyright © 2015 Elsevier Inc. All rights reserved. KEYWORDS: Angiotensin II; Inotropism; Isolated cardiomyocytes; NHE-1; Reactive oxygen species