IQUIR   05412
INSTITUTO DE QUIMICA ROSARIO
Unidad Ejecutora - UE
artículos
Título:
Repositioning Salirasib as a new antimalarial agent
Autor/es:
BOFILL VERDAGUER, IGNASI; FERREIRA DE AZEVEDO, MAURO; PEREZ, CONSUELO; KATZIN, ALEJANDRO M.; PORTA, EXEQUIEL O. J.; BANCHIO, CLAUDIA; LABADIE, GUILLERMO R.
Revista:
MedChemComm
Editorial:
Royal Society of Chemistry
Referencias:
Año: 2019 vol. 10 p. 1599 - 1605
ISSN:
2040-2503
Resumen:
Malaria is a serious tropical disease that kills thousands of people every year, mainly in Africa, due to Plasmodium falciparum infections. Salirasib is a promising cancer drug candidate that interferes with the post-translational modification of Ras. This S-farnesyl thiosalicylate inhibits isoprenylcysteine carboxyl methyltransferase (ICMT), a validated target for cancer drug development. There is a high homology between the human and the parasite enzyme isoforms, in addition to being a druggable target. Looking to repurpose its structure as an antimalarial drug, a collection of S-substituted derivatives of thiosalicylic acid were prepared by introducing 1,2,3-triazole as a diversity entry point or by direct alkylation of the thiol. We further investigated the in vitro toxicity of FTS analogues to Plasmodium falciparum in the asexual stages and in Vero cells. An antiplasmodial activity assay was performed using a simple, high-sensitivity methodology based on nanoluciferase (NLuc)-transfected P. falciparum parasites. The results showed that some of the analogs were active at low micromolar concentration, including Salirasib. The most potent member of the series has S-farnesyl and the 1,2,3-triazole moiety substituted with phytyl. However, the compound substituted with methyl-naphthyl shows promising physicochemical and activity values. The low cytotoxicity in eukaryotic cells of the most active analogs provided good therapeutic indices, being starting-point candidates for future antimalarial drug development.