INVESTIGADORES
BRABERMAN Victor Adrian
congresos y reuniones científicas
Título:
Exploration Policies for On-the-fly Controller Synthesis: a Reinforcement Learning Approach
Autor/es:
BRABERMAN VICTOR; DELGADO TOMÁS; SANCHEZ SORRONDO MARCOS; UCHITEL SEBASTIAN
Lugar:
Praga
Reunión:
Conferencia; International Conference on Automated Planning and Scheduling (ICAPS 2023); 2023
Resumen:
Controller synthesis is in essence a case of model-based planning for non-deterministic environments in which plans (actually “strategies”) are meant to preserve system goals indefinitely. In the case of supervisory control environments are specified as the parallel composition of state machines and valid strategies are required to be “non-blocking” (i.e., always enabling the environment to reach certain marked states) in addition to safe (i.e., keep the system within a safe zone). Recently, On-the-fly Directed Controller Synthesis techniques were proposed to avoid the exploration of the entire -and exponentially large- environment space, at the cost of non-maximal permissiveness, to either find a strategy or conclude there is none. The incremental exploration of the plant is currently guided by a domain-independent human-designed heuristic. In this work, we propose a new method for obtaining heuristics based on Reinforcement Learning. The synthesis algorithm is thus framed as an RL task with an unbounded action space and a modified version of DQN is used. With a simple and general set of features that abstracts both states and actions, we show that it is possible to learn heuristics on small versions of a problem that generalize to the larger instances, effectively doing zero-shot policy transfer. Our agents learn from scratch in a highly partially observable RL task and outperform the existing heuristic overall, in instances unseen during training.