CIOP   05384
CENTRO DE INVESTIGACIONES OPTICAS
Unidad Ejecutora - UE
capítulos de libros
Título:
NO2 vertical column retrieved by DOAS technique in Marambio, Antarctic
Autor/es:
RAPONI M. M.; JIMÉNEZ, RODRIGO; TOCHO, J. O.; QUEL, E. J.
Libro:
problems in atmospheric radiation (IRS 2008)
Editorial:
Springer
Referencias:
Lugar: Berlin, Germany; Año: 2008;
Resumen:
Abstract. A number of chemical species present in the stratosphere in very small concentrations (parts per billion and even smaller) contribute significantly to its chemical balance. One of the main stratospheric trace gases is nitrogen dioxide (NO2). This species acts as a restrictive agent for stratospheric ozone destruction (due to the chlorine monoxide), hence the importance of its study. We present a preliminary analysis of passive remote sensing measurements carry out at the Marambio Argentinean Antarctic Base (64.233º S; 56.616º W; 197 m amsl) during the months of January - February of 2008. The spectroscopy system consists of an optical fiber (400 μm core diameter and 6 m of longitude) and a portable spectral analyzer (spectrometer HR4000, Ocean Optics). The device analyzes diffuse solar spectral irradiance in the UVvisible range (290-650 nm), collected and transferred by a zenith-pointing optical fiber. The NO2 vertical column density (VCD) is derived from the radiance spectra using the DOAS (Differential Optical Absorption Spectroscopy) technique. The system and technique allow for simultaneous measurements of different species of interest on a variety of meteorological conditions. The vertical columns obtained are compared with co-located measurements performed with EVA, a visible absorption spectrometer operated by the Instituto Nacional de Técnica Aeroespacial (INTA), Spain.A number of chemical species present in the stratosphere in very small concentrations (parts per billion and even smaller) contribute significantly to its chemical balance. One of the main stratospheric trace gases is nitrogen dioxide (NO2). This species acts as a restrictive agent for stratospheric ozone destruction (due to the chlorine monoxide), hence the importance of its study. We present a preliminary analysis of passive remote sensing measurements carry out at the Marambio Argentinean Antarctic Base (64.233º S; 56.616º W; 197 m amsl) during the months of January - February of 2008. The spectroscopy system consists of an optical fiber (400 μm core diameter and 6 m of longitude) and a portable spectral analyzer (spectrometer HR4000, Ocean Optics). The device analyzes diffuse solar spectral irradiance in the UVvisible range (290-650 nm), collected and transferred by a zenith-pointing optical fiber. The NO2 vertical column density (VCD) is derived from the radiance spectra using the DOAS (Differential Optical Absorption Spectroscopy) technique. The system and technique allow for simultaneous measurements of different species of interest on a variety of meteorological conditions. The vertical columns obtained are compared with co-located measurements performed with EVA, a visible absorption spectrometer operated by the Instituto Nacional de Técnica Aeroespacial (INTA), Spain.2). This species acts as a restrictive agent for stratospheric ozone destruction (due to the chlorine monoxide), hence the importance of its study. We present a preliminary analysis of passive remote sensing measurements carry out at the Marambio Argentinean Antarctic Base (64.233º S; 56.616º W; 197 m amsl) during the months of January - February of 2008. The spectroscopy system consists of an optical fiber (400 μm core diameter and 6 m of longitude) and a portable spectral analyzer (spectrometer HR4000, Ocean Optics). The device analyzes diffuse solar spectral irradiance in the UVvisible range (290-650 nm), collected and transferred by a zenith-pointing optical fiber. The NO2 vertical column density (VCD) is derived from the radiance spectra using the DOAS (Differential Optical Absorption Spectroscopy) technique. The system and technique allow for simultaneous measurements of different species of interest on a variety of meteorological conditions. The vertical columns obtained are compared with co-located measurements performed with EVA, a visible absorption spectrometer operated by the Instituto Nacional de Técnica Aeroespacial (INTA), Spain.2 vertical column density (VCD) is derived from the radiance spectra using the DOAS (Differential Optical Absorption Spectroscopy) technique. The system and technique allow for simultaneous measurements of different species of interest on a variety of meteorological conditions. The vertical columns obtained are compared with co-located measurements performed with EVA, a visible absorption spectrometer operated by the Instituto Nacional de Técnica Aeroespacial (INTA), Spain. Keywords: DOAS, NO2 vertical column, Antarctic, spectrometerDOAS, NO2 vertical column, Antarctic, spectrometer PACS: 95.75.Rs95.75.Rs