INVESTIGADORES
RAVAZZOLI Claudia Leonor
capítulos de libros
Título:
Seismic Reflectivity in Carbon Dioxide Accumulations: a Review
Autor/es:
CLAUDIA L. RAVAZZOLI; JULIAN L. GOMEZ
Libro:
Carbon Sequestration and valorization
Editorial:
Intech Open
Referencias:
Lugar: Rijeka; Año: 2014; p. 343 - 364
Resumen:
It  is  widely  recognized   that  the  continuous  increase  in  the concentration of carbon dioxide (CO2)  in our atmosphere is a major agent in global climate  change.  Consequently, in accord with  the objectives  of  the Kyoto  agreement,  many carbon  dioxide capture and storage projects  are being developed worldwide to reduce  and  stabilize   the  emission  of  this  greenhouse   gas  into  the  atmosphere.  The geological storage of CO2 in many cases becomes a feasible option to  accomplish this goal, giving rise  to the science of carbon  sequestration, a challenging  task for governments, scientists and engineers. The  main  targets for  geological  disposal  of  CO2 are  depleted hydrocarbon reservoirs  and deep  saline aquifers.  While  the latter are  more numerous, their  characterization require  detailed studies because  they  are  typically  not  explored  for  prospecting.   The geological   sequestration  of   carbon   dioxide  requires   careful surveillance and monitoring  to prevent this gas from  leaking to the surface.  In  general, the significant contrast  between the physical properties of  natural reservoir fluids  and those of  carbon dioxide allows the utilization  of time lapse seismic methods  to monitor the evolution of the injected CO2 volume.   While it is accepted that time  lapse surveys are able to monitor the presence  or absence of  CO2 within  a geological  formation, their ability to  quantify the saturation,  state and volume of  this fluid within  the   reservoir  still   needs  research  efforts   from  the geophysical community.   This makes necessary the  search of reliable seismic indicators for this scenarios.  The theoretical and numerical modeling  provides, in  this sense,  with  a tool  to explore  useful correlations between the seismic  response and relevant parameters of  the CO2 repository.       The significance  of the seismic reflectivity has  been early recognized  by different  authors,  resulting in  the publication  of numerous  works for different  constitutive models  and applications. In  close connection  with this,  the analysis  of  seismic amplitude variation with angle, hereafter  referred to AVA is frequently used in  reservoir geophysics to  obtain information about  the rocks and  pore fluids.   The behavior  of the  reservoir  reflectivity for different  overall CO2  saturations,  distribution  types,  layer thicknesses,  frequencies  and  physical states  controls  the amplitude  of seismic  wave reflections  and strongly  conditions the detectability       of      the      injected CO2  volume. With this  idea, using rock physics  models, in this  book chapter we will  focus  on  the  theoretical  analysis  of  the  properties  and variations of  the seismic reflectivity  and related parameters  in a porous rock partially  saturated with CO2 and brine.   In our tests we will  model the seismic  effects of different CO2 accumulations formed below impermeable seals. We calibrate our models using  information of the Utsira formation, a shallow  saline  aquifer at  the  Sleipner  field (offshore  Norway). Millions of tonnes  of CO2 have been separated  since October 1996 from natural  gas and re-injected  into the aquifer, consisting  of a high   porosity,   unconsolidated   sandstone,  with   several   thin intra-reservoir shale layers.  These shale intervals act as temporary seals    causing    accumulations     of    CO2 beneath    them,  whose saturations increases  with time.   A 50-100 m  thick high velocity layer overlies  the sand, forming the  reservoir caprock,  known as the  Norland formation. It  is mainly  composed of shales,  siltstones and mudstones.  Another  high velocity  shale layer of about 5  m thick is located  about 10 m  below the top of the sand.  As pointed out  by Chadwick (2006) the topmost  CO2 layer is of special interest  in the monitoring  of the Sleipner  injection site, since its growth measures the  total upward flux and its changes over  time.  Thus, the analysis of the reflectivity associated to this kind  of CO2 accumulations is  an important topic in CO2  sequestration  problems.  The  present book chapter  focuses on this subject  and is  structured in  three main  sections considering different  aspects of  the problem. First, in Section 1 we present a description of the models and rock physics  tools to be used in  the subsequent sections. Next, in Section 2 we model the compressional P-wave reflection coefficient at the interface between a caprock and a permeable porous layer partially saturated by a  mixture of brine and CO2 at liquid, supercritical and gaseous conditions.   For this analysis we consider a  simple model  consisting  of two  halfspaces,  combining a  fluid substitution procedure  and a Gassmann-Hill formulation  to take into account variable  spatial distributions of the fluids.   We perform a sensitivity  analysis of  the standard  AVA  coefficients (intercept, gradient  and curvature)  in the  near offset  range,  to investigate their correlations with CO2  saturation and its thermodynamic state within  the  geologic formation.   Also,  we  analyze  the effect  of modeling the CO2 by means of simple and complex equations of state. The two-halfspace representation  considered in Section 2  is  valid  when the  accumulation  thicknesses  are  larger than  the involved seismic wavelengths.  When this assumption is not valid, the interference between  the multiple  waves reflected at  the different boundaries    give    rise    to   strong    frequency    dependence, reflectivity dispersion  and tuning effects  which must be taken into account.  To  do this, in Section 3  we compute the generalized  P-wave reflection coefficients by  means of a reflectivity  method.   This  leads  us  to the  study  of  frequency dependent  AVA and  amplitude  vs.  frequency  AVF, which  are topics  of great  interest  due  to the  increasing  use of  spectral decomposition  techniques on  seismic data.  This also  allows  us to analyze the pattern of maxima in the reflectivity amplitude and their associated peak frequencies, which are strongly related to the thickness of the CO2 layer. Seismic  monitoring of  geological  CO2 injection  sites is  mostly based on  the seismic reflections  coming from high  saturation accumulations.   This is due  to their  large seismic  amplitudes and good  signal  to noise  ratio.   However,  low-saturation zones  with dispersed CO2,  or saturation  transition zones may  have an important  role in  the propagation  of waves  within  the reservoir, giving rise  to amplitude and  phase changes of the  seismic signals. Transition  zones  have been  studied  by  different  authors in  the geophysical literature considering  linear velocity trends with depth and constant density  (Wolf, 1937, Liner, 2010).  Then, using the parameters of the  Sleipner field, in Section 4 we will  model the reflectivity  response of  a CO2  transition layer, defined by  a given linear  vertical CO2 saturation  profile, which results in a non-linear velocity trend with depth. In  general, emphasis  will  be placed  on establishing  correlations between the  seismic reflectivity and  related attributes (intercept, gradient,  curvature,   peak  frequencies)  and   the  overall CO2 saturation,  its physical  state and  thickness of  the accumulation. These  results are  intended  to  help in  the  understanding of  the expectable  variations in  a seismic  time lapse  study. They  can be extended to other CO2 repositories with a proper calibration of the rock and fluid properties.