INVESTIGADORES
WEISSTAUB Noelia Victoria
artículos
Título:
Modulation of gaba release from the thalamic reticular nucleus by cocaine and caffeine: role of serotonin receptors.
Autor/es:
GOITIA BELEN; RIVERO-ECHETO; WEISSTAUB NV; GINGRICH JA,; GARCIA RILL; BISAGNO,V; FRANCISCO URBANO
Revista:
JOURNAL OF NEUROCHEMISTRY
Editorial:
wiley
Referencias:
Año: 2015
ISSN:
1471-4159
Resumen:
Serotonin receptors are targets of drug therapies for a variety of neuropsychiatric and neurodegenerative disorders. Cocaine inhibits the re-uptake of serotonin (5-HT), dopamine, and noradrenaline while caffeine blocks adenosine receptors and opens ryanodine receptors in the endoplasmic reticulum. We studied how 5-HT and adenosine affected spontaneous GABAergic transmission from thalamic reticular nucleus (TRN). We combined whole-cell patch clamp recordings of miniature inhibitory post-synaptic currents (mIPSCs) in ventrobasal (VB) thalamic neurons during local (puff) application of 5-HT in wild type (WT) or knockout mice lacking 5-HT2A receptors (5-HT2A -/-). Inhibition of mIPSCs frequency by low (10 μM) and high (100 μM) 5-HT concentrations was observed in VB neurons from 5-HT2A -/- mice. In WT mice, only 100 μM 5-HT significantly reduced mIPSCs frequency. In 5-HT2A -/- mice, NAN-190, a specific 5-HT1A antagonist, prevented the 100 μM 5-HT inhibition while blocking H-currents that prolonged inhibition during post-puff periods. The inhibitory effects of 100 μM 5-HT were enhanced in cocaine binge-treated 5-HT2A -/-. Caffeine binge treatment did not affect 5-HT-mediated inhibition. Our findings suggest that both 5-HT1A and 5-HT2A receptors are present in presynaptic TRN terminals. Serotonergic-mediated inhibition of GABA release could underlie aberrant thalamocortical physiology described after repetitive consumption of cocaine. This article is protected by copyright. All rights reserved.