INVESTIGADORES
WEHT Ruben Oscar
artículos
Título:
Quantum interference effects of out-of-plane confinement on two-dimensional electron systems in oxides
Autor/es:
SANTANDER-SYRO, A.F.; DAI, J.; RÖDEL, T.C.; FRANTZESKAKIS, E.; FORTUNA, F.; WEHT, R.; ROZENBERG, M.J.
Revista:
Physical Review B
Editorial:
American Physical Society
Referencias:
Año: 2020 vol. 102
ISSN:
2469-9950
Resumen:
It was recently discovered that a conductive, metallic state is formed on the surface of some insulating oxides. First observed on SrTiO3 (001), it was then found in other compounds as diverse as anatase TiO2, KTaO3, BaTiO3, ZnO, and also on different surfaces of SrTiO3 (or other oxides) with different symmetries. The spatial extension of the wave function of this electronic state is of only a few atomic layers. Experiments indicate its existence is related to the presence of oxygen vacancies induced at or near the surface of the oxide. We present a simplified model aimed at describing the effect of its small spatial extension on measurements of its three-dimensional (3D) electronic structure by angular resolved photoemission spectroscopy. For the sake of clarity, we base our discussion on a simple tight-binding scheme plus a confining potential that is assumed to be induced by the oxygen vacancies. Our model parameters are, nevertheless, obtained from density functional calculations. With this methodology, we can explain, from a very simple concept of selective interference, the "wobbling,"i.e., the photoemission intensity modulation and/or apparent dispersion of the Fermi surface and spectra along the out-of-plane (kz) direction, and the "mixed 2D/3D"characteristics observed in some experiments. We conclude that the critical model parameters for such an effect are the relative strength of the electronic hopping of each band and the height/width aspect ratio of the surface confining potential. By considering recent photoemission measurements, in light of our findings, we can get relevant information on the electronic wave functions and the nature of the confining potential.