INVESTIGADORES
DICKENSTEIN Alicia Marcela
artículos
Título:
Mixed discriminants
Autor/es:
E. CATTANI; M. A. CUETO; A, DICKENSTEIN; S. DI ROCCO; B. STURMFELS
Revista:
MATHEMATISCHE ZEITSCHRIFT
Editorial:
SPRINGER
Referencias:
Lugar: Berlin; Año: 2013 vol. 274 p. 761 - 778
ISSN:
0025-5874
Resumen:
The mixed discriminant of n Laurent polynomials in n variables is the irreducible polynomial in the coefficients which vanishes whenever two of the roots coincide. The Cayley trick expresses the mixed discriminant as an A-discriminant.We show that the degree of the mixed discriminant is a piecewise linear function in the Plücker coordinates of a mixed Grassmannian. An explicit degree formula is given for the case of plane curves.