INVESTIGADORES
MILLÁN RaÚl Daniel
artículos
Título:
Fourth order phase-field model for local max-ent approximants applied to crack propagation
Autor/es:
FATEMEH AMIRI; DANIEL MILLÁN; MARINO ARROYO; MOHAMMAD SILANI; TIMON RABCZUK
Revista:
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Editorial:
ELSEVIER SCIENCE SA
Referencias:
Lugar: Amsterdam; Año: 2016 vol. 312 p. 254 - 275
ISSN:
0045-7825
Resumen:
We apply a fourth order phase-field model for fracture based on local maximum entropy (LME) approximants. The higher order continuity of the meshfree LME approximants allows to directly solve the fourth order phase-field equations without splitting the fourth order differential equation into two second order differential equations. We will first show that the crack surface can be captured more accurately in the fourth order model. Furthermore, less nodes are needed for the fourth order model to resolve the crack path. Finally, we demonstrate the performance of the proposed meshfree fourth order phase-field formulation for 5 representative numerical examples. Computational results will be compared to analytical solutions within linear elastic fracture mechanics and experimental data for three-dimensional crack propagation.