INVESTIGADORES
LEDERMAN Claudia Beatriz
artículos
Título:
A quasilinear parabolic singular perturbation problem
Autor/es:
LEDERMAN, CLAUDIA; OELZ, DIETMAR
Revista:
INTERFACES AND FREE BOUNDARIES
Editorial:
European Mathematical Society Publishing House
Referencias:
Lugar: Zürich; Año: 2008 vol. 10 p. 447 - 482
ISSN:
1463-9963
Resumen:
We study a singular perturbation problem for a quasilinear uniformly parabolic operator of interest in combustion theory. We obtain uniform estimates, we pass to the limit and we show that, under suitable assumptions, the limit function $u$ is a solution to the free boundary problem ${\rm div } F(\nabla u)-\partial_{t}u=0$ in $\{ u>0 \}$, $u_\nu=\alpha(\nu, M)$ on $\partial\{ u>0\}$, in a pointwise sense and in a viscosity sense. Here $ \nu$ is the inward unit spatial normal to the free boundary $\partial\{ u>0 \}$ and $M$ is a positive constant. Some of the results obtained are new even when the operator under consideration is linear.