INVESTIGADORES
RABUFFETTI Ana Pia
artículos
Título:
Microplastics distribution in river side bars: The combined effects of water level and wind intensity
Autor/es:
GARELLO, NICOLÁS A.; BLETTLER, MARTÍN C.M.; ESPÍNOLA, LUIS A.; RODRIGUES, STEPHANE; RIMONDINO, GUIDO N.; WANTZEN, KARL M.; RABUFFETTI, ANA PIA; GIRARD, PIERRE; MALANCA, FABIO E.
Revista:
THE SCIENCE OF TOTAL ENVIRONMENT
Editorial:
Elsevier
Referencias:
Año: 2023 vol. 897
ISSN:
0048-9697
Resumen:
Rivers are the main pathway for microplastics (MP) transport toward the ocean. However, the understanding of the processes involved in the deposition and mobilization of MP in rivers, specifically in sediment side bars (SB), remains very limited. The objectives of this study were: (i) to examine the effect of hydrometric fluctuations and wind intensity on the distribution of microplastics (MP < 5 mm) in the SB of large river (the Paraná River), (ii) to determine the characteristics of MP to infer their origin and fate, and (iii) to discuss potential similarities or differences between MP suspended in the water column and MP found in sediment. The SB and water column were sampled during the autumn, winter, and spring of 2018, and the summer of 2019 at different river discharges and wind intensities. >90 % of the MP items found were fiber of polyethylene terephthalate (PET; FT-IR analysis), the most common MP color was blue, and most were in the 0.5–2 mm size range. The concentration/composition of MP varied according to the river discharge and wind intensity. During the falling limb of the hydrograph when discharge is decreasing and sediments are exposed for short periods (13–30 days), MP particles transported by the flow were deposited on temporarily exposed SB, accumulating there in high densities (309–373 items/kg). However, during the drought, when sediments remained exposed for a long time (259 days), MP were mobilized and transported by the wind. During this period (no influence of the flow), MP densities significantly decreased on SB (39–47 items/kg). In conclusion, both hydrological fluctuations and wind intensity played a significant role in MP distribution in SB.