INVESTIGADORES
VILLAFAÑE virginia Estela
artículos
Título:
Influence of fluctuating irradiance on photosynthesis, growth and community structure of estuarine phytoplankton under increased nutrients and acidification
Autor/es:
BERMEJO, PAULA; DURÁN-ROMERO, CRISTINA; VILLAFAÑE, VIRGINIA E.; HELBLING, E. WALTER
Revista:
JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 2020 vol. 526
ISSN:
0022-0981
Resumen:
Estuaries represent the interface between riverine and marine ecosystems and they are among the most productive areas on Earth; thus it is of utmost importance to understand their functioning in a global change scenario. So far, it is virtually unknown how the interaction between nutrient inputs, acidification and fluctuating light regimes could alter photosynthesis, growth, and phytoplankton structure in the end members (i.e., river and sea) of estuaries. Using the Chubut river estuary (Argentina) as a model ecosystem, we conducted experimentation during the austral summer (i.e., the windy season, February of 2016) with both, river and seawater phytoplankton communities to assess these topics. We evaluated the impact of fluctuating irradiance (static vs. mixed conditions) using short- (< one day) and mid-term acclimation (five days) and mimicking scenarios of higher acidification and nutrients (Future) as compared with an unmodified Present. The growth ofboth communities increased significantly under the Future as compared to the Present scenario, but mixing decreased growth only in seawater phytoplankton. Small centric diatoms (mainly Thalassiosira spp.) co-dominated with unidentified flagellates in the seawater, but the relative abundance of diatoms was higher in the Future as compared with the Present scenario. Diatoms and cryptophytes co-dominated in the river at the end ofthe experiments for both static and mixed conditions. Net primary productivity (NPP) decreased in the Future scenario and this was coupled with higher inhibition (k) of photosystem II (PSII), in both communities. Our results indicate that fluctuating irradiance, under a future global change scenario, as simulated here, has a significant impact on the structure and growth of seawater phytoplankton, together with increases in photochemical inhibition and decreases in NPP. However, these changes are much smaller in the river phytoplankton. Thus, the overall effects of mixing on the trophodynamics of the area will be more important at the sea than in the river end of the estuary