INVESTIGADORES
DIEGUEZ Maria Del Carmen
artículos
Título:
Influence of dissolved organic matter character on mercury incorporation by planktonic organisms: an experimental study using oligotrophic water from Patagonian lakes
Autor/es:
DIÉGUEZ, MC, QUEIMALIÑOS, CP, RIBEIRO GUEVARA, S., MARVIN-DIPASQUALE, M., SOTO CÁRDENAS, C. AND ARRIBÉRE, MA
Revista:
JOURNAL OF ENVIRONMENTAL SCIENCES-CHINA
Editorial:
SCIENCE PRESS
Referencias:
Año: 2013 vol. 25 p. 1980 - 1991
ISSN:
1001-0742
Resumen:
Ligands present in dissolved organic matter (DOM) form complexes with inorganic divalent mercury (Hg2+) affecting its bioavailability in pelagic food webs. This investigation addresses the influence of a natural gradient of DOM present in Patagonian lakes on the bioaccumulation of Hg2+ (the prevailing mercury species in the water column of these lakes) by the algae Cryptomonas erosa and the zooplankters Brachionus calyciflorus and Boeckella antiqua. Hg2+ accumulation was studied through laboratory experiments using natural water (NW) of four oligotrophic Patagonian lakes amended with 197Hg2+. The bioavailability of Hg2+ was affected by the concentration and character of DOM. The entrance of Hg2+ into pelagic food webs occurs mostly through passive and active accumulation. The incorporation of Hg2+ by Cryptomonas, up to ~27% of the Hg2+ amended, was found to be rapid and dominated by passive adsorption, and was greatest when low molecular weight compounds (LMW) with protein-like or small phenolic signatures prevailed in the DOM. Conversely, high molecular weight compounds (HMW) with a humic or fulvic signature kept Hg2+ in the dissolved phase, resulting in the lowest Hg2+ accumulation in this alga. In Brachionus and Boeckella the direct incorporation of Hg from the aqueous phase was up to ~3% of the Hg2+amended. The dietary incorporation of Hg2+ by Boeckella exceeded the direct absorption of this metal in NW, and was remarkably similar to the Hg2+ adsorbed in their prey. Overall, DOM concentration and character affected the adsorption of Hg2+ by algae through competitive binding, while the incorporation of Hg2+ into the zooplankton was dominated by trophic or dietary transfer.