INVESTIGADORES
BUTELER micaela
artículos
Título:
Nanoinsecticidas: Nuevas perspectivas para el control de plagas
Autor/es:
STADLER, T.; BUTELER, M.; D. K. WEAVER
Revista:
REVISTA DE LA SOCIEDAD ENTOMOLóGICA ARGENTINA
Editorial:
SOCIEDAD ENTOMOLÓGICA ARGENTINA
Referencias:
Año: 2010 vol. 69 p. 149 - 149
ISSN:
0373-5680
Resumen:
Sustainable agriculture demands new environmentally friendly pesticides that adhere to strict international regulations. Part of the research on new biorational pesticides focuses on natural products such as plant extracts, oils, and inorganic insecticides. Insecticidal dusts represent the oldest group of substances used by men for pest management, and their efficacy is based on physical phenomena. With the advent of synthetic pesticides, insecticidal dusts were used as carriers for other active ingredients in formulated insecticides. Organic dusts made a come-back as insecticides with the discovery of hidrophobic kaolin in the 90’s. Recently, the discovery of nanoinsecticides brings new alternatives to expand the spectrum of applications of inorganic dusts. Development and registry of nanomaterials is based on the idea that they are not new materials, although they have different properties than the products with the same chemical structure, given that novel properties emerge from products when they are at the nanoscale. For example, reactivity, specific area, electric charge and quantum effects may differ. These substances with new properties are promising as tools for crop protection and food production, opening new frontiers for nanoinsecticides in pest management. For example, nanostructured alumina has been shown to have insecticidal properties, and it possesses some of the characteristics of an ideal insecticide, given that it is a natural product, not reactive, economical, with reduced probabilities of generating resistance in insects, and it is more effective than other commercially available insecticidal dusts. The current use of nanotechnology in a wide array of fields and products as well as the recent discovery of their potential in crop protection suggests that nanomaterials have a great potential for development of new products that will impact agriculture. Given the recent and widespread use of nanomaterials, there is an urgent need to study the impact of these products on human health and non target organisms, as well as to research more efficient and safer delivery technologies. The current levels of application of nanoparticles and the expected developments to come, suggest that nanotechnology will have a direct impact on the evolution of pest management practices in agriculture, offering techniques with a low environmental and health impact.