INVESTIGADORES
AIZEN Marcelo Adrian
artículos
Título:
Reproductive interactions mediated by flowering overlap in a temperate hummingbird-plant assemblage
Autor/es:
AIZEN, M.A. Y A.E. ROVERE
Revista:
OIKOS
Editorial:
WILEY-BLACKWELL PUBLISHING, INC
Referencias:
Año: 2010 vol. 119 p. 696 - 706
ISSN:
0030-1299
Resumen:
Pollinator-mediated competition through shared pollinators can lead to segregated flowering phenologies, but empirical evidence for the process responsible for this flowering pattern is sparse. During two flowering seasons, we examined whether increasing overlap in flowering phenology decreased conspecific pollination, increased heterospecific pollination, and depressed seed output in the seven species composing a hummingbird–plant assemblage from the temperate forest of southern South America. Overall trends were summarized using meta-analysis. Despite prevailing negative associations, relations between phenological overlap and conspecific pollen receipt varied extensively among species and between years. Heterospecific pollen receipt was low and presumably of limited biological significance. However, our results supported the hypothesis that concurrent flowering promotes interspecific pollen transfer, after accounting for changes in the abundance of conspecific flowers. Seed output was consistently reduced during maximum phenological overlap during the first flowering season because of limited fruit set. Responses varied more during the second year, despite an overall negative trend among species. Relations between estimated effects of phenological overlap on pollination and seed output, however, provided mixed evidence that conspecific pollen loss during pollinator visits to foreign flowers increases pollen limitation. By flowering together, different plant species might benefit each other’s pollination by increasing hummingbird recruitment at the landscape level. Nevertheless, our results are mostly consistent with the hypothesis of pollinator-mediated competition shaping the segregated flowering pattern reported previously for this temperate plant assemblage. The mechanisms likely involve effects on male function, whereby pollen-transport loss during heterospecific flower visits limit pollen export, and more variable effects on female function through pollen limitation.