INVESTIGADORES
MORALES juan manuel
artículos
Título:
A general modeling framework for animal movement and migration using multi-state random walks
Autor/es:
MCCLINTOCK B. T.; KING, R,; THOMAS, L.; MATTHIOPOULOS J.; MCCONNELL B.; MORALES, J. M.
Revista:
ECOLOGICAL MONOGRAPHS
Editorial:
ECOLOGICAL SOC AMER
Referencias:
Año: 2012 p. 335 - 349
ISSN:
0012-9615
Resumen:
Recent developments in animal tracking technology have permitted the collection of detailed data on the movement paths of individuals from many species. However, methods for the analysis of these data have not developed at a similar pace. This is largely due to a lack of suitable candidate models, coupled with the technical difficulties of fitting such models to data. To facilitate a general modeling framework, we propose that complex movement paths can be conceived as a series of movement strategies among which animals transition as they are affected by changes in their internal and external environment. As a synthesis of prior and novel methodologies, we develop a general suite of mechanistic models based on biased and correlated random walks that allow different behavioral states for directed (e.g., migration), exploratory (e.g., dispersal), area-restricted (e.g., foraging), and other types of movement. Using this ?tool-box? of nested model components, multi-state movement models may be custom-built for a wide variety of species applications. As a unified state-space modeling framework, it allows the simultaneous investigation of numerous hypotheses about animal movement from imperfectly observed data, including time allocations to different movement behavior states, transitions between states, the use of memory or navigation, and strengths of attraction (or repulsion) to specific locations. The inclusion of covariate information permits further investigation of specific hypotheses related to factors driving different types of movement behavior. Using reversible jump Markov chain Monte Carlo methods to facilitate Bayesian model selection and multi-model inference, we apply the proposed methodology to real data by adapting it to the natural history of the grey seal (Halichoerus grypus) in the North Sea. Although previous grey seal studies tended to focus on correlated movements, we found overwhelming evidence that bias towards haul-out or foraging locations far better explained seal movement than simple or correlated random walks. Posterior model probabilities also provided evidence that seals transition among directed, area-restricted, correlated, and exploratory movements associated with haul-out, foraging, and other behaviors. With this intuitive framework for modeling and interpreting animal movement, we believe the development and application of bespoke movement models will become much more accessible to ecologists and non-statisticians.