INVESTIGADORES
PUNTIERI javier Guido
artículos
Título:
Growth-unit structure in trees: effects of branch category and position in Nothofagus nervosa, N. obliqua and their hybrids (Nothofagaceae)
Autor/es:
PUNTIERI, JAVIER GUIDO; GHIRARDI, SOLEDAD
Revista:
TREES-STRUCTURE AND FUNCTION
Editorial:
SPRINGER
Referencias:
Lugar: Berlín; Año: 2010 vol. 24 p. 657 - 665
ISSN:
0931-1890
Resumen:
In plants with rhythmic growth, a branch segment extended in one event is known as growth unit (GU). GU structure, resulting from the resources allocated to stem length, volume and mass, and to leaf area and mass, is relevant for understanding branch functioning in the context of plant development. This study compares GU structure between main branches and short branches positioned at low and high positions on nursery-grown trees of three closely related genetic entities: Nothofagus nervosa,Nothofagus nervosa, N. obliqua and natural hybrids between these species. GUs of short branches, compared to those of main branches, had lower length, diameter and number of leaves, and higher specific leaf area (SLA), stem density and proportional mass in leaves than in stems. GUs at high position on the trees had a higher proportion of their mass in stem than in leaves and a lower SLA than those at low position. Stem density was higher for N. nervosa and the hybrid trees than for N. obliqua. Most other GU traits did not differ statistically between the considered genetic entities. The three genetic entities exhibited distinct patterns of variation in leaf size with leaf position along main-branch GUs. The individual tree had a significant effect on most variables. GU structure would have a major ontogenetic component and would play a relevant role in the architecture of Nothofagus species and their adaptation to different environmental conditions. Nothofagus species and their adaptation to different environmental conditions. conditions.and natural hybrids between these species. GUs of short branches, compared to those of main branches, had lower length, diameter and number of leaves, and higher specific leaf area (SLA), stem density and proportional mass in leaves than in stems. GUs at high position on the trees had a higher proportion of their mass in stem than in leaves and a lower SLA than those at low position. Stem density was higher for N. nervosa and the hybrid trees than for N. obliqua. Most other GU traits did not differ statistically between the considered genetic entities. The three genetic entities exhibited distinct patterns of variation in leaf size with leaf position along main-branch GUs. The individual tree had a significant effect on most variables. GU structure would have a major ontogenetic component and would play a relevant role in the architecture of Nothofagus species and their adaptation to different environmental conditions. Nothofagus species and their adaptation to different environmental conditions. conditions.N. nervosa and the hybrid trees than for N. obliqua. Most other GU traits did not differ statistically between the considered genetic entities. The three genetic entities exhibited distinct patterns of variation in leaf size with leaf position along main-branch GUs. The individual tree had a significant effect on most variables. GU structure would have a major ontogenetic component and would play a relevant role in the architecture of Nothofagus species and their adaptation to different environmental conditions. Nothofagus species and their adaptation to different environmental conditions. conditions.N. obliqua. Most other GU traits did not differ statistically between the considered genetic entities. The three genetic entities exhibited distinct patterns of variation in leaf size with leaf position along main-branch GUs. The individual tree had a significant effect on most variables. GU structure would have a major ontogenetic component and would play a relevant role in the architecture of Nothofagus species and their adaptation to different environmental conditions. Nothofagus species and their adaptation to different environmental conditions. conditions.