INQUINOA   21218
INSTITUTO DE QUIMICA DEL NOROESTE
Unidad Ejecutora - UE
capítulos de libros
Título:
Gum Arabic: More Than an Edible Emulsifier
Autor/es:
MARIANA A. MONTENEGRO; LAURA BOIERO; LORENA VALLE; CLAUDIO D. BORSARELLI
Libro:
Products and Applications of Biopolymers
Editorial:
InTech - Open Access Publisher
Referencias:
Lugar: info@intechweb.org; Año: 2011; p. 3 - 27
Resumen:
Gum Arabic (GA) or Acacia gum is an edible biopolymer obtained as exudates of mature trees of Acacia senegal and Acacia seyal which grow principally in the African region of Sahe in Sudan. The exudate is a non-viscous liquid, rich in soluble fibers, and its emanation from the stems and branches usually occurs under stress conditions such as drought, poor soil fertility, and injury (Williams & Phillips, 2000). The use of GA dates back to the second millennium BC when the Egyptians used it as an adhesive and ink. Throughout the time, GA found its way to Europe and it started to be called "gum arabic" because was exported from Arabian ports. Chemically, GA is a complex mixture of macromolecules of different size and composition (mainly carbohydrates and proteins). Today, the properties and features of GA have been widely explored and developed and it is being used in a wide range of industrial sectors such as textiles, ceramics, lithography, cosmetics and pharmaceuticals, encapsulation, food, etc. Regarding food industry, it is used as a stabilizer, a thickener and/or an emulsifier agent (e.g., soft drink syrup, gummy candies and creams) (Verbeke et al., 2003). In the pharmaceutical industry, GA is used in pharmaceutical preparations and as a carrier of drugs since it is considered a physiologically harmless substance. Additionally, recent studies have highlighted GA antioxidant properties (Trommer & Neubert, 2005; Ali & Al Moundhri, 2006; Hinson et al., 2004), its role in the metabolism of lipids (Tiss et al., 2001, Evans et al., 1992), its positive results when being used in treatments for several degenerative diseases such as kidney failure (Matsumoto et al., 2006; Bliss et al., 1996; Ali et al., 2008), cardiovascular (Glover et al., 2009) and gastrointestinal (Wapnir et al., 2008; Rehman et al., 2003). Therefore, there is substantial evidence that GA can play a positive health-related role in addition to its well-known properties as an emulsifier. Therefore, the aim of this chapter is to describe general aspects of the source, composition, and already known uses of GA as well as some new aspects of its antioxidant capacity against some reactive oxygen substances (ROS), and its antimicrobial activity (AMA).