INQUINOA   21218
INSTITUTO DE QUIMICA DEL NOROESTE
Unidad Ejecutora - UE
artículos
Título:
Ent-kaurane derivatives from the root cortex of yacon and other three Smallanthus species (Heliantheae, Asteraceae)
Autor/es:
M. V. COLL ARÁOZ, M. I. MERCADO, A. GRAU, C.A.N. CATALÁN
Revista:
BIOCHEMICAL SYSTEMATICS AND ECOLOGY
Editorial:
PERGAMON-ELSEVIER SCIENCE LTD
Referencias:
Lugar: Amsterdam; Año: 2010 vol. 35 p. 1042 - 1048
ISSN:
0305-1978
Resumen:
The metabolites produced by the secretory canals of the root cortex from four Smallanthus species belonging to the yacon group were identified as ent-kaurane-type diterpenes. The dichloromethane root cortex extracts of the four species were treated with diazomethane and analyzed comparatively by GC–MS using a simple and rapid procedure which is very sensitive and reproducible permitting detection of minor components. In all cases, ent-16-kauren-19-oic acid (kaurenoic acid) methyl ester was the main component, differences being observed only in the minor components. The minor components identified were grandiflorenic acid methyl ester, ent-16-kauren-19-al, 16a,17-epoxy-15a-angeloyloxykauran-19-oic acid methyl ester and several O-acyl derivatives at C-15 or C-18 of kaurenoic acid. One of the minor components, 18-isobutyroyloxy-ent-kaur-16-en-19-oic acid is a new kaurenoic acid derivative. Grandiflorenic acid and 15-a-angeloyloxy-16,17-a-epoxyent-16-kauren-19-oic acid were present only in Smallanthus sonchifolius and Smallanthus siegesbeckius which showed very similar GC traces. The different GC profile of RC diterpenes from Smallanthus connatus and Smallanthus macroscyphus supports the view that they are different taxa. Some chemotaxonomic aspects of the genus Smallanthus and the subtribe Milleriinae are briefly discussed.Smallanthus species belonging to the yacon group were identified as ent-kaurane-type diterpenes. The dichloromethane root cortex extracts of the four species were treated with diazomethane and analyzed comparatively by GC–MS using a simple and rapid procedure which is very sensitive and reproducible permitting detection of minor components. In all cases, ent-16-kauren-19-oic acid (kaurenoic acid) methyl ester was the main component, differences being observed only in the minor components. The minor components identified were grandiflorenic acid methyl ester, ent-16-kauren-19-al, 16a,17-epoxy-15a-angeloyloxykauran-19-oic acid methyl ester and several O-acyl derivatives at C-15 or C-18 of kaurenoic acid. One of the minor components, 18-isobutyroyloxy-ent-kaur-16-en-19-oic acid is a new kaurenoic acid derivative. Grandiflorenic acid and 15-a-angeloyloxy-16,17-a-epoxyent-16-kauren-19-oic acid were present only in Smallanthus sonchifolius and Smallanthus siegesbeckius which showed very similar GC traces. The different GC profile of RC diterpenes from Smallanthus connatus and Smallanthus macroscyphus supports the view that they are different taxa. Some chemotaxonomic aspects of the genus Smallanthus and the subtribe Milleriinae are briefly discussed.