INVESTIGADORES
PASQUEVICH Gustavo Alberto
congresos y reuniones científicas
Título:
Optimal configuration for Mössbauer Line Tracking experiments
Autor/es:
G. A. PASQUEVICH; A. L. VEIGA; P. MENDOZA ZÉLIS; F. H. SÁNCHEZ
Lugar:
Vienna, Austria
Reunión:
Conferencia; International Conference on the Applications of the Mössbauer Effect; 2009
Institución organizadora:
Universität wien
Resumen:
     Mössbauer  Line  Tracking  (MLT)  is  a  recently developed  technique  [1][2]  designed  to  continuously locate a resonant absorption line of the spectrum while it shifts  in  energy  as  a  consequence  of  some  external parameter manipulation (e.g. temperature).      In  this  kind  of  experiment  a  programmable-velocity scaler [3] is used to record a few spectral channels in the surroundings  of  the  absorption  line  for  a  predetermined time  interval.  Based  on  data  from  this  region  of  interest (ROI),  an  algorithm  relocates  the  ROI  and  restarts  the measure in a closed loop manner.      The nature of the  tracking  algorithm,  the  number  of channels  in  the  ROI,  its  energy  distribution  and  the recording time for each channel are all parameters related to  the  experimental  design.  The  best  choice  for  such parameters  depends  on  the  characteristics  of  the experiment. They can even be programmed to change in time  or  to  be  tied  to  the  evolution  of  the  externally manipulated parameter.                                                                          In  this  work  we  find  the  theoretical  distribution  of points  that  best  keeps  track  of  the  line  center  in  a simplified  case.  This  result  can  be  considered  as  a  first approximation  to  the  optimal  design.  Experimental verification of the results is also presented.  In order to find the optimal ROI constitution, several computational  simulations  were  conducted  for  different cases.      The  first  case  to  be  considered  was  the  problem  to find  the  optimal  number  of  channels  and  its  spacing, taking a fixed time for each ROI recording (i.e. increasing the  number  of  points  decreases  the  time  spent  in  each point  collecting  data).  The  optimal  tracking  implies  the smallest  statistical  reconstruction  error  for  a  given measure time. Equally-spaced channels were considered, as  well  as  Poisson  statistical  distribution  and  Lorentzian shaped  absorption  lines  with  known  full  idth  at  half maximum  (FWHM).  We  found  that  the   best tracking option consists of only two channels, separated in energy a value that ranges between  FWHM and the maximum-slope points of the Lorentzian curve. As an example, Fig.1  presents  relative  standard  deviation  of  the reconstruction error for 2x104 events/point as a funtion of spacing for the two-channel ROI.                                                                         The study was extended for the cases where the line width is unknown and where the width changes with the external  parameter.  The  effect  of  using  not  equally-spaced points is also considered.      Finally, some experiments were conducted on FeSn2 in order to verify the results. FeSn2 is an antiferromagnet with  a  unique  structural  site  for  the  iron  probe,  with  no quadrupolar  interaction  [4].  Its  Mössbauer  spectrum consists of a unique sextet that collapses into a singlet at about  340  K,  what  makes  it  suitable  for  fast  scan testing from RT. Fig. 2 presents the results for one of the experiments, where the sixth absorption line (2.5% effect) was  successfully  tracked  by  a  two-channel  ROI  at  2 s/channel,  while  the  sample  temperature  was  increased from RT to 120 C at a rate of 100 C/hour.     The  tracking  succeeds  up  to  the  magnetic  collapse, where  the  algorithm  catches  the  more  intense paramagnetic  line.  The  whole  experiment  required  less than an hour. Off-line reconstruction was conducted later in  order  to  find  the  line  position dependance  with temperature. [1] A. Veiga et al., Hyperfine Interact. 118 (2009) 137. [2] P. Mendoza Zélis et al., Hyperfine Interact. (in press). [3] A. Veiga et al., Hyperfine Interact. 167 (2006) 905. [4] P. Mendoza Zélis et al., Phys. Lett. A 298 (2002) 55