INVESTIGADORES
PETRUCCELLI Silvana
artículos
Título:
Synthesis of single-chain antibody fragment fused to the elastin-like polypeptide in Nicotiana benthamiana and its application in affinity precipitation of difficult to produce proteins
Autor/es:
MARIN VIEGAS, VANESA SOLEDAD; OCAMPO, CAROLINA GABRIELA; RESTUCCI, FERNANDO; VIGNOLLES FLORENCIA; MAZZINI, FLAVIA NOELIA; CANDREVA, ÁNGELA MARÍA; PETRUCCELLI SILVANA
Revista:
Biotechnology and bioengineering
Editorial:
John Wiley & Sons, Inc.
Referencias:
Lugar: Hoboken, New Jersey 07030; Año: 2022
Resumen:
Plants are economical and sustainable factories for the production of recombinant proteins. Currently, numerous proteins produced using different plant-based systems with applications as cosmetic and tissue culture ingredients, research and diagnostic reagents, and industrial enzymes are marketed worldwide. In this work, we aimed to demonstrate the usefulness of a plant-based system to synthesize a single-chain antibody (scFv)- elastin-like polypeptide (ELP) fusion to be applied as an affinity precipitation reagent of the difficult to produce recombinant proteins. We used the human tissue transglutaminase (TG2), the main celiac disease autoantigen, as a proof of concept. We cloned a TG2-specific scFv and fused it to a short hydrophobic ELP tag. The anti-TG2-scFv-ELP was produced in N. benthamiana and was efficiently recovered by an inverse transition cycling procedure improved by co-aggregation with bacteria-made free ELP. Finally, the scFv-ELP was used to purify both plant-synthesized human TG2 and also Caco-2-TG2. In conclusion, this work showed for the first time the usefulness of a plant-based expression system to produce an antibody-ELP fusion designed for the purification of low yield proteins.