INVESTIGADORES
CELEJ Maria Soledad
artículos
Título:
Differential scanning calorimetry as a tool to estimate binding parameters in multi-ligand binding proteins.
Autor/es:
CELEJ MS; DASSIE SA; GONZÁLEZ M; BIANCONI ML; FIDELIO GD
Revista:
ANALYTICAL BIOCHEMISTRY
Editorial:
Academic Press
Referencias:
Lugar: USA; Año: 2006 vol. 350 p. 277 - 284
ISSN:
0003-2697
Resumen:
<!-- /* Style Definitions */ p.MsoNormal, li.MsoNormal, div.MsoNormal {mso-style-parent:""; margin:0in; margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:ES; mso-fareast-language:ES;} @page Section1 {size:8.5in 11.0in; margin:1.0in 1.25in 1.0in 1.25in; mso-header-margin:.5in; mso-footer-margin:.5in; mso-paper-source:0;} div.Section1 {page:Section1;} --> The stability of proteins and their interactions with other molecules is a topic of special interest in biochemistry because many cellular processes depend on that. New methods and approaches are constantly developed to elucidate the energetics of biomolecular recognition. In this sense, the application of the theory of macromolecular unfolding linked to ligand binding to differential scanning calorimetry (DSC) has proved to be a useful tool to simultaneously characterize the energetics of unfolding and binding. Although the general theory is well known, the applicability of DSC to study the interaction of biomolecules is not common. In the current work, we estimated the binding parameters of 8-anilinonaphthalene-1-sulfonic acid to human serum albumin using DSC. This model system was chosen due to both the complex stoichiometry and the moderate binding constants. From DSC curves acquired at different ligand concentrations, we obtained the number of bound ligands, the binding constants, and the binding enthalpy for each independent binding site. Compared with those parameters determined by titration calorimetry, the results highlight the potentiality of DSC to estimate binding parameters in multiligand binding proteins.