INVESTIGADORES
MODENUTTI Beatriz Estela
artículos
Título:
Increase in photosynthetic efficiency as a strategy of planktonic organisms exploiting deep lake layers.
Autor/es:
BEATRIZ ESTELA MODENUTTI O BEATRIZ MODENUTTI O B. MODENUTTI; E BALSEIRO,; CRISTIANA CALLIERI,; CP QUEIMALIÑOS,; ROBERTO BERTONI,
Revista:
FRESHWATER BIOLOGY (PRINT)
Editorial:
Blackwell
Referencias:
Lugar: Inglaterra; Año: 2004 vol. 49 p. 160 - 160
ISSN:
0046-5070
Resumen:
1. The photosynthetic efficiencies of the mixotrophic ciliate Ophrydium naumanni and the autotrophic dinoflagellate Gymnodinium paradoxum were investigated using laboratory and field experiments in Lake Moreno Oeste (415¢S and 7133¢W, 758 m a.s.l.), in the Nahuel Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. field experiments in Lake Moreno Oeste (415¢S and 7133¢W, 758 m a.s.l.), in the Nahuel Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. autotrophic dinoflagellate Gymnodinium paradoxum were investigated using laboratory and field experiments in Lake Moreno Oeste (415¢S and 7133¢W, 758 m a.s.l.), in the Nahuel Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. field experiments in Lake Moreno Oeste (415¢S and 7133¢W, 758 m a.s.l.), in the Nahuel Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. Ophrydium naumanni and the autotrophic dinoflagellate Gymnodinium paradoxum were investigated using laboratory and field experiments in Lake Moreno Oeste (415¢S and 7133¢W, 758 m a.s.l.), in the Nahuel Huapi System (North Patagonia, Argentina). 2. The effect of different underwater light intensities on net primary production (NPP) was assessed during one summer. Additionally, laboratory experiments were carried out to obtain photosynthesis-irradiance response curves for each species. 3. Ophrydium naumanni and G. paradoxum dominated the metalimnetic (30 m depth) deep chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. chlorophyll maximum (DCM) in the lake. 4. Despite these deep higher abundances, the cell-specific production of both species was higher at 10 m than at 30 m (DCM) depth. In addition, at 5 m depth, NPP was reduced by PAR + UV-A radiation. 5. Both species exhibited a positive NPP at very low irradiance but the mixotrophic ciliate was more efficient in exploiting the DCM irradiance level both in situ and at comparable light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. light intensities in laboratory experiments. Light acclimatised O. naumanni showed a higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes, organisms cannot select their position in the epilimnetic water column and will be dragged to potentially harmful UV radiation levels. Thus, metalimnetic DCM colonisation by these two species represents a tradeoff between higher survival and lower cell-specific NPP. higher NPP at lower irradiances and photoinhibition at medium and high irradiances. 6. Under the strong wind-driven turbulence commonly found in Patagonian lakes,
rds']