IIMYC   23581
INSTITUTO DE INVESTIGACIONES MARINAS Y COSTERAS
Unidad Ejecutora - UE
artículos
Título:
Stress responses to warming in the mussel Brachidontes rodriguezii (d'Orbigny, 1842) from different environmental scenarios
Autor/es:
DÍAZ-JARAMILLO, M.; MARCOVAL, A.; MATOS, B.; PINONI, S.; DINIZ, M.S.
Revista:
AQUATIC TOXICOLOGY
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 2020 vol. 228
ISSN:
0166-445X
Resumen:
The intertidal mussel B. rodriguezii is a representative species from hard bottom substrates where both anthropogenic and natural stressors are present. Pre-exposure to these different stressors can modify the tolerance to additional stressors such as warming. Moreover, this tolerance can vary depending on intraspecific variables such as the organism´s sex. The effects of warming and its intraspecific variability in representative coastal species are crucial to understanding the tolerance to future environmental scenarios. The mussels were collected in different environmental scenarios, including low (Control), chemical (Harbour) and natural stressed (Estuary) sites, and then exposed to different water temperatures (10?30 °C) for 14 days. Lethal and sublethal responses were evaluated in different mussel populations. Thus, cumulative death rate, air survival time, heat shock proteins (HSC70/HSP70), total ubiquitin, catalase (CAT), glutathione-s-transferase (GST) and lipid peroxidation (TBARS) were assessed in mussels from different areas and different sexes. The results revealed diminished air survival time and high cumulative mortality rate in mussels collected at the harbour and those exposed to higher temperatures, respectively. The sublethal responses of the field animals showed different patterns according to the different areas investigated. Besides, the results revealed that these differences were also observed between sexes. Regarding the sublethal responses in mussels exposed to warming, the interactive effects of temperature and sites showed a strong influence on all biochemical parameters analyzed (p < 0.001). Therefore, harbour mussels showed a distinct pattern compared to other locations and reflecting the most damaging effects of warming. The influence of sex and its interactions with warming were also crucial in most of the sublethal responses (p < 0.05). Multivariate analysis was performed with all sublethal responses, and the different warming scenarios showed different groups according to the sites. In the predicted warming scenarios, males showed no differences between sites. In contrast to males, females showed differences between sites in the predicted and the worse-case warming scenarios. Our results highlight the importance of compensatory mechanisms in the mussel warming tolerance like HSP70. The influence of sex is also crucial in understanding warming tolerance in mussels chronically exposed to pollutants in their natural environment. Also, lethal endpoints are essential for understanding the non-reversibility signature of the observed biochemical responses.