ICATE   21876
INSTITUTO DE CIENCIAS ASTRONOMICAS, DE LA TIERRA Y DEL ESPACIO
Unidad Ejecutora - UE
artículos
Título:
A meteorite crater on Earth formed on September 15, 2007
Autor/es:
TANCREDI G.; ISHITSUKA J,; SCHULTZ P,; R S, HARRIS; BROWN P,; REVELLE D,; ANTIER K,; LE PICHON A; ROSALES D,; VIDAL, E; VARELA, M.E; SANCJHEZ L.; BENAVENTE S,; BOJORQUEZ J.; CABEZAS D.; DALMAU A,
Revista:
METEORITICS & PLANETARY SCIENCE
Editorial:
METEORITICAL SOC
Referencias:
Año: 2009 vol. 44 p. 1967 - 1984
ISSN:
1086-9379
Resumen:
Abstract–On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes. many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes. –On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.