INVESTIGADORES
GARCIA beatriz Elena
congresos y reuniones científicas
Título:
Performance of NbSi transition-edge sensors readout with a 128 MUX factor for the QUBIC experiment
Autor/es:
QUBIC COLABORATION (SALATINO, M. ET AL); GARCIA, B (QUBIC COLL.)
Lugar:
Austin
Reunión:
Conferencia; SPIE; 2018
Institución organizadora:
SPIE, the international society for optics and photonics About SPIE, the international society for optics and photonics
Resumen:
QUBIC (the Q&U Bolometric Interferometer for Cosmology) is a ground-based experiment which seeks to improve the current constraints on the amplitude of primordial gravitational waves. It exploits the unique technique, among Cosmic Microwave Background experiments, of bolometric interferometry, combining together the sensitivity of  bolometric detectors with the control of systematic eects typical of interferometers. QUBIC will perform sky observations in polarization, in two frequency bands centered at 150 and 220 GHz, with two kilopixel focal plane arrays of NbSi Transition-Edge Sensors (TES) cooled down to 350 mK. A subset of the QUBIC instrument, the so called QUBIC Technological Demonstrator (TD), with a reduced number of detectors with respect to the full instrument, will be deployed and commissioned before the end of 2018.The voltage-biased TES are read out with Time Domain Multiplexing and an unprecedented multiplexing (MUX) factor equal to 128. This MUX factor is reached with two-stage multiplexing: a traditional one ex-ploiting Superconducting QUantum Interference Devices (SQUIDs) at 1K and a novel SiGe Application-Specic Integrated Circuit (ASIC) at 60 K. The former provides a MUX factor of 32, while the latter provides a further4. Each TES array is composed of 256 detectors and read out with four modules of 32 SQUIDs and two ASICs.A custom software synchronizes and manages the readout and detector operation, while the TES are sampled at 780 Hz (100kHz/128 MUX rate).In this work we present the experimental characterization of the QUBIC TES arrays and their multiplexing readout chain, including time constant, critical temperature, and noise properties.