INVESTIGADORES
ENRIZ Ricardo Daniel
artículos
Título:
An exhaustive Conformational Analysis of N-acetyl-L-Cysteine-N-methylamide. Identification of the Complete set of Interconversio Pathway on the Ab initio and DFT Potential Energy Hypersurface
Autor/es:
J.A. BOMBASARO, M.A.ZAMORA, H.A. BALDONI , R.D.ENRIZ
Revista:
JOURNAL OF PHYSICAL CHEMISTRY A
Editorial:
American Chemical Society
Referencias:
Lugar: Columbus; Año: 2005 vol. 109 p. 874 - 884
ISSN:
1089-5639
Resumen:
The full conformational space of N-acetyl-L-cysteine-N-methylamide was explored by ab initio (RHF/ 6-31G(d)) and DFT (B3LYP/6-31G(d)) computations. Multidimensional conformational analysis predicts 81 structures in N-acetyl-L-cysteine-N-methylamide, but only 47 relaxed structures were previously determined at the RHF/3-21G level of theory. These structures were now optimized using RHF/6-31G(d) and B3LYP/ 6-31G(d) approaches. Seven conformational migrations were observed when recalculated at higher level of theory. Besides these major changes, only smaller conformational shifts were operative for the remaining stationary points. The exploration of the whole conformational space of N-acetyl-L-cysteine-N-methylamide, including the transition-state structures allowing the conformational interconversion among the low-energy forms, was analyzed in this study. Our results offer new insights into the influence of polar side chains on the conformational preferences of peptide structures.N-acetyl-L-cysteine-N-methylamide was explored by ab initio (RHF/ 6-31G(d)) and DFT (B3LYP/6-31G(d)) computations. Multidimensional conformational analysis predicts 81 structures in N-acetyl-L-cysteine-N-methylamide, but only 47 relaxed structures were previously determined at the RHF/3-21G level of theory. These structures were now optimized using RHF/6-31G(d) and B3LYP/ 6-31G(d) approaches. Seven conformational migrations were observed when recalculated at higher level of theory. Besides these major changes, only smaller conformational shifts were operative for the remaining stationary points. The exploration of the whole conformational space of N-acetyl-L-cysteine-N-methylamide, including the transition-state structures allowing the conformational interconversion among the low-energy forms, was analyzed in this study. Our results offer new insights into the influence of polar side chains on the conformational preferences of peptide structures.N-acetyl-L-cysteine-N-methylamide, but only 47 relaxed structures were previously determined at the RHF/3-21G level of theory. These structures were now optimized using RHF/6-31G(d) and B3LYP/ 6-31G(d) approaches. Seven conformational migrations were observed when recalculated at higher level of theory. Besides these major changes, only smaller conformational shifts were operative for the remaining stationary points. The exploration of the whole conformational space of N-acetyl-L-cysteine-N-methylamide, including the transition-state structures allowing the conformational interconversion among the low-energy forms, was analyzed in this study. Our results offer new insights into the influence of polar side chains on the conformational preferences of peptide structures.N-acetyl-L-cysteine-N-methylamide, including the transition-state structures allowing the conformational interconversion among the low-energy forms, was analyzed in this study. Our results offer new insights into the influence of polar side chains on the conformational preferences of peptide structures.