INVESTIGADORES
CAVAGNARO pablo Federico
artículos
Título:
Microsatellite isolation and marker development in carrot - genomic distribution, linkage mapping, genetic diversity analysis and marker transferability across Apiaceae. BMC Genomics.
Autor/es:
CAVAGNARO, P. F.; CHUNG, S.-M.; MANIN, S.; YILDIZ, M.; ALI, A.; ALESSANDRO, M. S.; IORIZZO, M.; SENALIK, D.; SIMON, P. W.
Revista:
BMC GENOMICS
Editorial:
BIOMED CENTRAL LTD
Referencias:
Año: 2011 vol. 12 p. 386 - 406
ISSN:
1471-2164
Resumen:
Background The Apiaceae family includes several vegetable and spice crop species among which carrot is the most economically important member, with ~21 million tons produced yearly worldwide. Despite its importance, molecular resources in this species are relatively underdeveloped. The availability of informative, polymorphic, and robust PCR-based markers, such as microsatellites (or SSRs), would facilitate a number of genetic and breeding purposes in carrot and other Apiaceae, including integration of linkage maps, tagging of phenotypic traits and assisting positional gene cloning. Thus, with the purpose of isolating carrot microsatellites, two different strategies were used; a hybridization-based library enrichment for SSRs, and bioinformatic mining of SSRs in BAC-end sequence and EST sequence databases. This work reports on the development and characterization at various levels of 300 carrot SSR markers.  Results Evaluation of microsatellites isolated from both DNA sources in subsets of 7 carrot F2 mapping populations revealed that SSRs from the hybridization-based method were longer, had more repeat units and were more polymorphic than SSRs isolated by sequence search. Overall, 196 SSRs (65.1%) were polymorphic in at least one mapping population, and the percentage of polymophic SSRs across F2 populations ranged from 17.8 to 24.7. Polymorphic markers in one family were evaluated in the entire F2, allowing the genetic mapping of 55 SSRs (38 codominant) onto the carrot reference map. The SSR loci were distributed throughout all 9 carrot linkage groups (LGs), with 2 to 9 SSRs/LG. In addition, SSR evaluations in carrot-related taxa indicated that a significant fraction of the carrot SSRs transfer successfully across Apiaceae, with heterologous amplification success rate decreasing with the target-species evolutionary distance from carrot. SSR diversity evaluated in a collection of 65 D. carota accessions revealed a high level of polymorphism for these selected loci, with an average of 19 alleles/locus and 0.84 expected heterozygosity. Conclusions The addition of 55 SSRs to the carrot map, together with marker characterizations in six other mapping populations, will facilitate future comparative mapping studies and integration of carrot maps.  The markers developed herein will be a valuable resource for assisting breeding, genetic, diversity, and genomic studies of carrot and other Apiaceae.