INVESTIGADORES
OLLER  Sergio Horacio Cristobal
artículos
Título:
An integrated procedure for the structural design of a composite rotor-hydrofoil of a water current turbine (WCT)
Autor/es:
S. A. OLLER; L. NALLIM; S. OLLER
Revista:
APPLIED COMPOSITE MATERIALS
Editorial:
SPRINGER
Referencias:
Lugar: Berlin; Año: 2013 vol. 20 p. 1273 - 1288
ISSN:
0929-189X
Resumen:
This paper shows an integrated structural design optimization of a composite rotor-hydrofoil of a water current turbine by means the finite elements method (FEM), using a Serial/Parallel mixing theory coupled with a fluid-dynamic formulation and multi-objective optimization algorithm. The composite hydrofoil of the turbine rotor has been design using a reinforced laminate composites, taking into account the optimization of the carbon fiber orientation to obtain the maximum strength and lower rotational-inertia. Also, these results have been compared with a steel hydrofoil remarking the different performance on both structures. The mechanical and geometrical parameters involved in the design of this fiber-reinforced composite material are the fiber orientation, number of layers, stacking sequence and laminate thickness. Water pressure in the rotor of the turbine is obtained from a coupled fluid-dynamic simulation (CFD). The main purpose ofthis paper is to achieve a very low inertia rotor minimizing the start-stop effect, because it is applied in axial water flow turbine currently in design by the authors, in which is important to take the maximum advantage of the kinetic energy. To validate the procedure here presented, many turbine rotors made of composite materials are analyzed and three of them are compared with the steel one.