PERSONAL DE APOYO
FASCIO Mirta Liliana
artículos
Título:
Composite resins based on novel and highly reactive bisglycidyl methacrylate monomers
Autor/es:
ANA MARÍA HERRERA-GONZALEZ; NORMA B. D´ACCORSO; CARLOS ENRIQUE CUEVAS-SUÁREZ; MIRTA L. FASCIO; JESÚS GARCÍA SERRANO; MIRIAM A. MARTINS ALHO; JUAN ELIEZER ZAMARRIPA-CALDERÓN
Revista:
Journal of Applied Polymer Science
Editorial:
Wiley Periodicals, Inc
Referencias:
Año: 2014 vol. 131
ISSN:
1097-4628
Resumen:
Three new bisglycidyl monomers; 1,4-bis((2-hydroxy-3-methacryloxypropoxy) methyl)benzene (MB-Phe-OH), 1,4-bis(2-
hydroxy-3-methacryloxypropoxy)2-cis-butene (MB-Cis-OH), and 1,7-bis(2-hydroxy-3-methacryloxypropoxy)heptane (MB-1,7-OH);
were synthesized and used as Bis-GMA/TEGDMA (bisphenolglycidyl methacrylate/triethylene glycol dimethacrylate) composite resin
additives. Flexural properties and double bond conversion of the dental resins composed of silanizated inorganic filler and organic
matrices containing new monomers were evaluated. The composite resins formulated, using the monomers MB-Cis-OH and MB-1,7-
OH, have mechanical properties and double bond conversion comparable with those of Bis-GMA/TEGDMA composite resin used as
control. The composite containing the new monomer MB-Phe-OH has better flexural properties (flexural strength 65.01 MPa and
flexural modulus 5675.91 MPa) than the control composite resin (flexural strength 52.85 MPa and flexural modulus 4879.72 MPa);
this could be attributed to the molecular structure of the monomer and its high double bond conversion level of 74.19%. The new
bisglycidyl methacrylate monomer MB-Phe-OH could be potentially useful in the development of new organic matrices for dental
composite resins with high double bond conversion and enhanced mechanical properties.