INVESTIGADORES
ACION Laura
artículos
Título:
Hippocampal Volume and Mood Disorders After Traumatic Brain Injury
Autor/es:
R JORGE; L ACION; S STARKSTEIN; V MAGNOTTA
Revista:
BIOLOGICAL PSYCHIATRY
Editorial:
ELSEVIER SCIENCE INC
Referencias:
Lugar: Amsterdam; Año: 2007
ISSN:
0006-3223
Resumen:
BackgroundRecent evidence from clinical studies and animal models of traumatic brain injury (TBI) suggest that neuronal and glial loss might progress after the initial insult in selectively vulnerable regions of the brain such as the hippocampus. There is also evidence that hippocampal dysfunction plays a role in the pathogenesis of mood disorders. We examined the relationship between hippocampal damage and mood disorders after TBI and the effect of hippocampal atrophy on the outcome of TBI patients.MethodsThe study group consisted of 37 patients with closed head injury who were evaluated at baseline and at 3, 6, and 12 months after trauma. Psychiatric diagnosis was made with a structured clinical interview and DSM-IV criteria. Quantitative magnetic resonance imaging scans were obtained at 3-months follow-up.ResultsPatients with moderate to severe head injury had significantly lower hippocampal volumes than patients with mild TBI. Patients who developed mood disorders had significantly lower hippocampal volumes than patients without mood disturbance. Furthermore, there was a significant interaction between mood disorders diagnosis and severity of TBI, by which patients with moderate to severe TBI who developed mood disorders had significantly smaller hippocampal volumes than patients with equivalent severe TBI who did not develop mood disturbance. Finally, reduced hippocampal volumes were associated with poor vocational outcome at 1-year follow-up.ConclusionsOur findings are consistent with a ?double-hit? mechanism by which neural and glial elements already affected by trauma are further compromised by the functional changes associated with mood disorders (e.g., the neurotoxic effects of increased levels of cortisol or excitotoxic damage resulting from overactivation of glutaminergic pathways). Finally, patients with greater hippocampal damage were less likely to return to a productive life 1 year after trauma.