INVESTIGADORES
CID Mariana Paula
artículos
Título:
Development of 3D printed fibrillar collagen scaffold for tissue engineering
Autor/es:
NOCERA, ADEN DÍAZ; COMÍN, ROMINA; SALVATIERRA, NANCY ALICIA; CID, MARIANA PAULA
Revista:
BIOMEDICAL MICRODEVICES
Editorial:
SPRINGER
Referencias:
Año: 2018 vol. 20
ISSN:
1387-2176
Resumen:
Collagen is widely used in tissue engineering because it can be extracted in large quantities, and has excellent biocompatibility, good biodegradability, and weak antigenicity. In the present study, we isolated printable collagen from bovine Achilles tendon and examined the purity of the isolated collagen using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The bandsobtained corresponded to α1, α2 and β chains with little contamination from other small proteins. Furthermore, rheological measurements of collagen dispersions (60 mg per ml of PBS) at pH 7 revealed values of viscosity of 35.62 ± 1.42 Pa s at shear rate of 10 s − 1 and a shear thinning behavior. Collagen gels and solutions can be used for building scaffolds by three-dimensional(3D) printing. After designing and fabricating a low-cost 3D printer we assayed the collagen printing and obtaining 3D printed scaffolds of collagen at pH 7. The porosity of the scaffold was 90.22% ± 0.88% and the swelling ratio was 1437% ± 146%. The microstructure of the scaffolds was studied using scanning electron microscopy, and a porous mesh of fibrillar collagen was observed. In addition, the 3D printed collagen scaffold was not cytotoxic with cell viability higher than 70% using Vero and NIH 3 T3 cells. In vitro evaluation using both cells lines demonstrated that the collagen scaffolds had the ability to support cellattachment and proliferation. Also a fibrillar collagen mesh was observed after two weeks of culture at 37 °C. Overall, these results are promising since they show the capability of the presented protocol to obtain printable fibrillar collagen at pH 7 and the potential of the printing technique for building low-cost biocompatible 3D plotted structures which maintained the fibrillarcollagen structure after incubation in culture media without using additional strategies as crosslinking.