INVESTIGADORES
REY Osvaldo
artículos
Título:
Amino acid-stimulated Ca2+ oscillations produced by the Ca2+-sensing receptor are mediated by a phospholipase C/inositol 1,4,5-trisphosphate-independent pathway that requires G12, Rho, filamin-A, and the actin cytoskeleton.
Autor/es:
REY O, YOUNG SH, YUAN J, SLICE L, ROZENGURT E.
Revista:
JOURNAL OF BIOLOGICAL CHEMISTRY
Editorial:
AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
Referencias:
Año: 2005 p. 22875 - 22882
ISSN:
0021-9258
Resumen:
The G protein-coupled Ca(2+)-sensing receptor (CaR) is an allosteric protein that responds to two different agonists, Ca(2+) and aromatic amino acids, with the production of sinusoidal or transient oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). Here, we examined whether these differing patterns of [Ca(2+)](i) oscillations produced by the CaR are mediated by separate signal transduction pathways. Using real time imaging of changes in phosphatidylinositol 4,5-biphosphate hydrolysis and generation of inositol 1,4,5-trisphosphate in single cells, we found that stimulation of CaR by an increase in the extracellular Ca(2+) concentration ([Ca(2+)](o)) leads to periodic synthesis of inositol 1,4,5-trisphosphate, whereas l-phenylalanine stimulation of the CaR does not induce any detectable change in the level this second messenger. Furthermore, we identified a novel pathway that mediates transient [Ca(2+)](i) oscillations produced by the CaR in response to l-phenylalanine, which requires the organization of the actin cytoskeleton and involves the small GTPase Rho, heterotrimeric proteins of the G(12) subfamily, the C-terminal region of the CaR, and the scaffolding protein filamin-A. Our model envisages that Ca(2+) or amino acids stabilize unique CaR conformations that favor coupling to different G proteins and subsequent activation of distinct downstream signaling pathways.