INVESTIGADORES
MARTINEZ PASTUR Guillermo Jose
artículos
Título:
Ground-dwelling spiders and understory vascular plants on Fuegian austral forests: Community responses to variable retention management and their association to natural ecosystems
Autor/es:
ARGAÑARAZ, CARINA I.; MARTÍNEZ PASTUR, GUILLERMO J.; RAMÍREZ, MARTÍN J.; GRISMADO, CRISTIAN J.; BLAZINA, ANA P.; LENCINAS, MARÍA V.
Revista:
FOREST ECOLOGY AND MANAGEMENT
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Año: 2020 vol. 474
ISSN:
0378-1127
Resumen:
Variable retention mitigates negative effects of traditional harvesting on biodiversity, maintaining legacies inharvested forests as habitat for sensitive species, and generating other habitats for early-seral species. Theirassessment, including drivers, has a high concern for society. Likewise, species association with ecosystems inthe landscape (as different forest types, grasslands and peatlands) are unknown for some taxa and regions, andcould explain species flow into harvested areas. Therefore, we evaluated the forest harvest impact on grounddwelling spiders and vascular plants, their diversity and association to vegetation types in the landscape matrix,and richness and abundance correlations with forest structure. Six natural common habitats were studied inTierra del Fuego (Argentina), where variable retention has been implemented: aggregated (AR) and dispersed(DR) retention in harvested Nothofagus pumilio forests, unharvested primary forests (NPF) as reference, grasslands (G), peatlands (P), and unharvested N. antarctica forests (NAF). We surveyed spiders (N = 432, by 6habitats × 6 replicates × 6 collections × 2 years), and vascular plants (N = 36, by 6 habitats × 6 replicates),and characterized forest structure in wooded ecosystems. We determined for both taxa richness, relativeabundance (total captures/ground cover) and Shannon-Wiener and Pielou indices, compared assemblage composition and indicator species among harvesting treatments and vegetation types, and analyzed correlations. Wesampled 752 individuals of spiders from 33 species (six families), and 79 vascular plant species (28 families) thataveraged 52% total vegetation cover. Total spider captures and overall richness were higher inDR > NPF > AR, although differences were not detected at plot level for any variable. For understory vascularplants, richness and cover were the highest on DR, followed by AR and NPF, as well as at plot level, with noaffectation in indices. Likewise, highest richness and abundance occurred in NAF and NPF for spiders, and inNAF and G for vascular plants, with unique assemblages in each vegetation type despite the shared species.Assemblages also differed in harvested areas, including species of other vegetation types mainly in DR, wherenew conditions were generated by reduction of forest structure variables (evidenced by negative correlations),while AR maintained species composition similar to NPF, contributing to the conservation of forest specialists.Indicators occurred for both taxa in several habitats. This study highlights the importance of different vegetationtypes for spider and plant conservation at landscape level, while provides tools for developing monitoringstrategies and conservation policies.