INVESTIGADORES
CUESTAS Maria Lujan
artículos
Título:
Poloxamines display a multiple inhibitory activity of ATP-Binding Cassette (ABC) transporter in hepatic cell lines.
Autor/es:
CUESTAS ML; SOSNIK A; MATHET VL
Revista:
MOLECULAR PHARMACEUTICS
Editorial:
AMER CHEMICAL SOC
Referencias:
Lugar: Washington; Año: 2011 vol. 8 p. 1152 - 1164
ISSN:
1543-8384
Resumen:
Mol Pharm. 2011 Aug 1;8(4):1152-64. Epub 2011 Jun 7. Poloxamines display a multiple inhibitory activity of ATP-binding cassette (ABC) transporters in cancer cell lines. Cuestas ML, Sosnik A, Mathet VL. Source The Group of Biomaterials and Nanotechnology for Improved Medicines (BIONIMED), Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín St, Sixth Floor, Buenos Aires CP1113, Argentina. Abstract Primary hepatocellular carcinoma is the third most common fatal cancer worldwide with more than 500,000 annual deaths. Approximately 40% of the patients with HCC showed tumoral overexpression of transmembrane proteins belonging to the ATP-binding cassette protein superfamily (ABC) which pump drugs out of cells. The overexpression of these efflux transporters confers on the cells a multiple drug resistance phenotype, which is considered a crucial cause of treatment refractoriness in patients with cancer. The aim of this study was to investigate the inhibitory effect of different concentrations of pH- and temperature-responsive X-shaped poly(ethylene oxide)-poly(propylene oxide) block copolymers (poloxamines, Tetronic, PEO-PPO) showing a wide range of molecular weights and EO/PO ratios on the functional activity of three different ABC proteins, namely P-glycoprotein (P-gp or MDR1), breast cancer resistance protein (BCRP), and multidrug resistance-associated protein MRP1, in two human hepatocarcinoma cell lines, HepG2 and Huh7. First, the cytotoxicity of the different copolymers (at different concentrations) on both liver carcinoma cell lines was thoroughly evaluated by means of apoptosis analysis using annexin V and propidium iodide (PI). Thus, viable cells (AV-/PI-), early apoptotic cells (AV+/PI-) and late apoptotic cells (V-FITC+/PI+) were identified. Results pointed out copolymers of intermediate to high hydrophobicity and intermediate molecular weight (e.g., T904) as the most cytotoxic. Then, DiOC2, rhodamine 123 and vinblastine were used as differential substrates of these pumps. HeLa, an epithelial cell line of human cervical cancer that does not express P-gp, was used exclusively as a control and enabled the discerning between P-gp and MRP1 inhibition. Moderate to highly hydrophobic poloxamines T304, T904 and T1301 showed inhibitory activity against P-gp and BCRP but not against MRP1 in both hepatic cell lines. A remarkable dependence of this effect on the copolymer concentration and hydrophobicity was found. No inhibitory effect against these ABC pumps was observed with the hydrophilic T1107. These findings further evidence the potential usefulness of these Trojan horses as both drug nanocarriers and ABC inhibitors in hepatic MDR tumors and infections that involve the activity of these efflux transporters.