INVESTIGADORES
TOLOZA Julio Hugo
artículos
Título:
Exponentially accurate error estimates of quasiclassical eigenvalues. II. Several dimensions
Autor/es:
JULIO H. TOLOZA
Revista:
JOURNAL OF MATHEMATICAL PHYSICS
Editorial:
American Institute of Physics
Referencias:
Lugar: Melville; Año: 2003 vol. 44 p. 2806 - 2806
ISSN:
0022-2488
Resumen:
We study the behavior of truncated Rayleigh?Schrödinger series for low-lying eigenvalues of the time-independent Schrödinger equation, in the semiclassical limit of the Planck´s constant going to 0. In particular we prove that if the potential energy satisfies certain conditions, there is an optimal truncation of the series for the eigenvalues, in the sense that this truncation is exponentially close to the exact eigenvalue. These results were already discussed for the one-dimensional case in a previous article. This time we consider the multi-dimensional problem, where degeneracy plays a central role.