ICYTE   26279
INSTITUTO DE INVESTIGACIONES CIENTIFICAS Y TECNOLOGICAS EN ELECTRONICA
Unidad Ejecutora - UE
artículos
Título:
Quantum game application to spectrum scarcity problems
Autor/es:
JUAN PABLO BARRANGÚ; O. G. ZABALETA; C. M. ARIZMENDI
Revista:
PHYSICA A - STATISTICAL AND THEORETICAL PHYSICS
Editorial:
ELSEVIER SCIENCE BV
Referencias:
Lugar: Amsterdam; Año: 2017 vol. 466 p. 455 - 461
ISSN:
0378-4371
Resumen:
Recent spectrum-sharing research has produced a strategy to address spectrum scarcity problems. This novel idea, named cognitive radio, considers that secondary users can opportunistically exploit spectrum holes left temporarily unused by primary users. This presents a competitive scenario among cognitive users, making it suitable for game theory treatment. In this work, we show that the spectrum-sharing benefits of cognitive radio can be increased by designing a medium access control based on quantum game theory. In this context, we propose a model to manage spectrum fairly and effectively, based on a multiple-users multiple-choice quantum minority game. By taking advantage of quantum entanglement and quantum interference, it is possible to reduce the probability of collision problems commonly associated with classic algorithms. Collision avoidance is an essential property for classic and quantum communications systems. In our model, two different scenarios are considered, to meet the requirements of different user strategies. The first considers sensor networks where the rational use of energy is a cornerstone; the second focuses on installations where the quality of service of the entire network is a priority